Demystifying SaaS, PaaS and IaaS

May 3, 2010

cloud computing the next biggest thing since the Web? The answer is YES. After Mainframe, Personal Computer, Client Server Computing and the Web, this is the next big thing. According to the International Data Corporation (IDC) October 2008 report, projected Cloud IT Spending in 2012 will be $42 Billion; a growth of about 27% from 2008. IDC forecasts that Asia Pacific spending on IT cloud services to grow fourfold, reaching $3.6 billion by 2013. IDC sees that new uses of cloud technology will be introduced to include those markets which cannot yet take advantage of cloud computing.Cloud computing is broken down into three segments: “software”, “platform” and “infrastructure”.Each segment serves a different purpose and offers different products to businesses and individuals around the world.Software as a Service (SaaS) is the service based on the concept of renting software from a service provider rather than buying it yourself. The software is hosted on centralized network servers to make functionality available over the web or intranet. Also known as “software on demand” it is currently the most popular type of cloud computing because of its high flexibility, great services, enhanced scalability and less maintenance. Yahoo mail, Google docs, CRM applications are all instances of SaaS. With a web-based CRM all that employees need to do is register and login to the central system and import any existing customer data. The service provider hosts both the application and the data so the end user is free to use the service from anywhere. SaaS is very effective in lowering the costs of business as it provides the business an access to applications at a cost normally far cheaper than a licensed application fee which is possible due to its monthly fees based revenue model. With SaaS user need not worry about installation or upgrades.From SaaS, now the industry is moving towards Platform as a Service (PaaS). PaaS offers a development platform for developers. The end users write their own code and the PaaS provider uploads that code and presents it on the web. SalesForce.com's Force.com is an example of PaaS. PaaS provides services to develop, test, deploy, host and maintain applications in the same integrated development environment. It also provides some level of support for the creation of applications. Thus PaaS offers a faster more cost effective model for application development and delivery. The PaaS provider manages upgrades, patches and other routine system maintenance. PaaS is based on a metering or subscription model so users only pay for what they use. Users take what they need without worrying about the complexity behind the scenes.There are basically four types of PaaS solutions – social application platforms, raw compute platforms, web application platforms and business application platform. Facebook is a type of social application platform wherein third parties can write new applications that are made available to end users. The CRM solutions provided by the companies are examples of business application platform. Developers can upload and execute their applications on Amazon's infrastructure which is an example of raw compute platform. While the Google provides APIs to developers to build web applications which is an example of web application platform.The final segment in the cloud computing is the infrastructure. Infrastructure as a Service (IaaS) is delivery of the computing infrastructure as a fully outsourced service. Some of the companies that provide infrastructure services are Google, IBM, Amazon.com etc. Managed hosting and development environments are the services included in IaaS. The user can buy the infrastructure according to the requirements at any particular point of time instead of buying the infrastructure that might not be used for months. IaaS operates on a “Pay as you go” model ensuring that the users pay for only what they are using. Virtualization enables IaaS providers to offer almost unlimited instances of servers to customers and make cost-effective use of the hosting hardware. IaaS users enjoy access to enterprise grade IT Infrastructure and resources that might be very costly if purchased completely. Thus dynamic scaling, usage based pricing, reduced costs and access to superior IT resources are some of the benefits of IaaS. IaaS is also sometimes referred to as Hardware as a Service (HaaS). An Infrastructure as a Service offering also provides maximum flexibility because just about anything that can be virtualized can be run on these platforms. This is perhaps the biggest benefit of an IaaS environment. For a startup or small business, one of the most difficult things to do is keep capital expenditures under control. By moving your infrastructure to the cloud, you have the ability to scale as if you owned your own hardware and data center.So we could see that where SaaS offers a complete application as service and PaaS offers the ability to develop an application, IaaS doesn’t care about the application at all. If you have already written a lot of code or have a software package you want to install and run in the cloud, then you'll be looking for IaaS. If you have no software or want to build something from scratch to solve a problem for which there is no package available or the packages are too expensive or complicated, then you should go for PaaS. The unit of deployment varies from the server to the application and these three types of services offered in cloud computing will have great effect on the nature of IT operations.]]>Try E2E Cloud to believe in it. Sign-up for a free trial here

Latest Blogs
This is a decorative image for: What is SOTA in Artificial Intelligence?
August 5, 2022

What is SOTA in Artificial Intelligence?

If you are one of those people who love to pursue Artificial Intelligence and related operations like Machine Learning, then you must have certainly come across a term called SOTA. It is one of the much-talked things in the field of AI and holds a lot of gravity.

But for those who are interested yet are clueless about what SOTA is and what its relevance is in the field of AI, here is a simple definition of SOTA, what it means, and what importance it holds.  

What is SOTA?

SOTA is an acronym for State-Of-The-Art. In the context of Artificial Intelligence (AI), it refers to the best models that can be used for achieving the results in a task. Mind you; it should be an AI-specific task only. SOTA models can be applied in many ways in AI. It could either be applied to –

(a) Machine Learning (ML) tasks

(b) Deep Neural Networks (DNNs) tasks

(c) Natural Language Processing (NLPs) [this is a subset of deep neural networks]

(d) Generic tasks

How does SOTA help in AI?

Using SOTA models in AI has many benefits of its own. The primary benefits are –

  • Increases task precision

First of all, you should check which parameters define your SOTA Model. These parameters could be the recall or the precision, or the area under the curve (AUC). It could be any metric you choose. After that, you could determine the value of the SOTA for each of the chosen metrics. If these metrics get a high score (about 90%-95%) in performance accuracy, then it is labelled as a SOTA. Now it is pretty obvious that these models score high on accuracy, so the AI task will be as close to what the users need to do.  

  • Increases reliability

Since the precision of the SOTA models is high, as mentioned above, the reliability of the AI task also increases. If it is a machine learning task or deep neural network task, then be assured that the results are pretty much what they are supposed to be. They can be trusted and not be considered a random test of sorts. But how do you know that the SOTA is trustworthy?

So, here’s a suggestion. While you are building the SOTA test, it would be better if you ran noise experiments on the SOTA model. It will help you in measuring the standard deviation in the many identical tests runs that you are subjecting the model to. You can use this measurable deviation as a sort of shift or tolerance, and then you can compare the original SOTA result and the reproduced result. Testing the results will help you in verifying the features that are required in the algorithm in the future.

  • Ensures reproducibility

If you want your AI product to be agile and lean, then you will be able to ship the minimal viable product (MVP or a minimal version of your envisioned product) quickly to all your customers. You can then proceed to get user feedback and improve iteratively. Therefore, reproducibility in your SOTA model can be considered to be a good practice. This will help you in making compromises in your algorithm. You can also ship your algorithm quickly. And yes, about the customer feedback you have collected, you can use it as a guide for all your efforts in future product improvements.

  • Reduces generation time

Since the SOTA model helps you in reproducibility of the algorithm or the product, it also helps you in saving time when you put the entire process on the conveyor belt. That means you can make a saleable product from a prototype in less time than when you made the same product from scratch. All you need is to reproduce the algorithm on the parameters on which it needs to be tested are already in possession, so yes, you save a lot of time in the generation of the product.

When should you run a SOTA test?

You should run SOTA tests as frequently as possible. Frequent SOTA tests are a rule of thumb in AI. But it is advisable to run them once a week. You should also run the SOTA tests when you are incorporating important changes. It is advisable to run the SOTA tests should be run on a cloud virtual machine using a good pipeline like Jenkins.

Where can the SOTA models be used?

SOTA models are used in various artificial intelligence activities –

(a) Object detection by deep neural networks

(b) Single shot multi box detectors

(c) Self-adaptive tasks like choosing variable patterns

This list is not exhaustive as the possibility of using SOTA encompasses many branches of AI. Be on the lookout for future blogs to know more about SOTA and its applications in every subset of AI.

To sum up, SOTA models have played a crucial role in advancing AI and ML technologies. It has introduced structural efficiency that has boosted performance. Now, developers run various SOTA tests using the virtual GPUs, which further streamlines the process and reduce the upfront infrastructure costs, and E2E Networks is making it possible with cloud GPUs.

Reference Links

https://towardsdatascience.com/software-design-patterns-and-principles-for-a-i-1-sota-tests-3dd265c6bf97

https://deci.ai/blog/sota-dnns-overview/

https://paperswithcode.com/sota

This is a decorative image for : Should you migrate to E2E Cloud from Digital Ocean?
August 5, 2022

Should you migrate to E2E Cloud from Digital Ocean?

There comes a time in professional business life when they want to migrate all their data, resources, applications, workloads, etc., to the cloud for security reasons. It is a process of transferring data from on-premises to the cloud. Everyone prefers to use the cloud these days, but cloud migration can be an overwhelming process. Business wants to go with a service with minimal downtime and a hassle-free experience. So if you are using Digital Ocean for a while and now prefer to switch to another service, then this one question must have popped into your mind: should you migrate to the E2E cloud from the digital ocean? Here in this blog, we are going to answer the same. But first thing first, let's understand the benefits of migrating to the cloud.

The Top Benefit of Migrating to the Cloud

Businesses prefer to rely on cloud platforms due to various reasons, some of which are listed below:

1. Security

The first benefit of using a cloud platform is the high level of security compared to other network systems. The shared responsibility model is used in the cloud system, which is why this model is more successful than the traditional network system. All the data and resources of the business are stored centrally, which makes the cloud network convenient.

2. Scalability

The second benefit of using cloud platforms is scalability which means businesses can increase and decrease their requirement anytime based on the need and performance of the company. Firms and organisations have the flexibility to alter their infrastructure needs and workloads based on the current condition.

3. Integration

Another benefit of switching to a cloud platform is seamless integration. Businesses can connect multiple systems altogether without any difficulty. Not only does this increase the efficiency of the company, but it also saves money. Cloud services are updated and improved regularly, so the chances of decreased efficiency are less.

4. Cost

Lastly, one of the significant benefits of using cloud networks is cost. It reduced operational costs. Business here only pays according to usage, saving a lot of money.

Should You Migrate to the E2E Cloud From Digital Ocean?

Yes, that is possible, and with the recent hike in Digital Ocean's price, the only convenient option for organizations is to migrate to the best affordable solution. And when we talk about affordability, the E2E cloud seems to be the best in the market. The answer has a high-quality infrastructure. Around ten thousand clients are relying on E2E cloud solutions. The platform is built to fulfil the need of every kind of business. The solution is designed to execute real-world use cases such as NLP, health tech and consumer tech.

The thing which is loved by businesses is the quick deployment process, and the E2E cloud understands that very well. That's why companies will get the one-click deployment at their fingertip. And most importantly, the pricing model business will bring to the E2E cloud is unbeatable.

The process of cloud migration can be excruciating. Newbies and newcomers can't do it without proper assistance. That's why the E2E cloud is readily available at their customer service with the required help.

Sign up to E2E Cloud Now

With all that in mind, if you are looking for the most convenient solution, then give the E2E cloud a try. Not only will we help you save money, but you will get the cloud platform with high reliability too. Reach out to us to get a consultation on the migration process from Digital Ocean to our forum.

References

https://touchstonesecurity.com/cloud-migration-benefits/

https://www.vultr.com/news/Should-you-switch-from-DigitalOcean-to-Vultr/

This is a decorative image for- How do data scientists use PyTorch?
August 4, 2022

How do data scientists use PyTorch?

PyTorch was introduced for the first time in 2016 and it is a deep learning open-source framework. It has become very popular among developers due to its ease of usage and efficiency. PyTorch is getting huge critical acclaim because of its compatibility with a high-level programming language Python which is also favored by data scientists and machine learning developers.

About PyTorch

Deep learning models are a type of machine learning model that have multiple applications and usage which include language processing, image recognition, and more. PyTorch is an elegant framework that can help in the construction of deep learning models. This framework has been written using Python and the best part about PyTorch is that it is extremely easy to learn and implement for machine learning developers.

Furthermore, PyTorch is unique in its support of GPUs. Other exclusive features of PyTorch include auto-differentiation, reverse-mode, computational graph, etc. This is also why PyTorch is a popular choice among developers for prototyping and fast experimentation.

Why is PyTorch a popular choice among developers and data scientists?

PyTorch is the product of Meta’s Artificial Intelligence research lab and others. The framework has incorporated the Python programming language in the front end with a resilient and productive backend library from Torch which is also GPU accelerated. The entire framework concentrates on unreadable code, quick prototyping, and assisting multiple categories of deep learning models. 

Although PyTorch enables the friendly yet authoritative programming approach for data scientists and developers, simultaneously providing production graphs. The framework was released as open source in the year 2017 and because of its Python roots, it has become fairly popular among machine learning programmers.

Benefits of PyTorch for data scientists

Due to its innovative characteristics, PyTorch is extremely popular in deep learning. For example, PyTorch has implemented a chainer technology known as reverse-mode automatic differentiation. To put it more simply, the method is like a tape recorder that completes each and every operation, then computes the gradients, and finally iterates the entire process. 

Due to this particular feature, debugging in PyTorch is very simple and it can also adapt to specific applications such as dynamic neural networks.  PyTorch is also well accepted for prototyping because every repetition can provide different results.

Python developers extensively use PyTorch which has been developed using the Python language. The framework utilizes the define-by-run eager execution mode and authoritativeness of the language through which all the operations are executed. 

Although Python is fairly popular among developers and other programming languages, a recent survey by Datanami shows there has been a growing focus on machine learning, deep learning, and AI thus paving the way for industry-wide PyTorch implementation.

For existing Python developers and data scientists, PyTorch has become a good choice for its futuristic scope. Moreover, those who are comparatively new to deep learning can already come across an enlarging library of deep learning courses which are specifically based on PyTorch. Since its release, the API of this framework has remained consistent and that is why PyTorch is significantly easy to decipher for experienced Python programmers.

If we look at any particular strength of PyTorch then it is prototyping in smaller projects. It is also beneficial for academics and research communities because of its ease of usage and flexibility. Facebook’s AI research lab is also working tirelessly to ameliorate the productive application of PyTorch.

The latest releases of PyTorch have included multiple enhancements. Moreover, it has also added ONNX, or Open Neural Network Exchange which can help the developers comply with the deep learning models that will be productive for their projects or applications.

Features of PyTorch

Here is a list of important features of PyTorch:

 

  • PyTorch has an excellent and active community of developers that provides brilliant tutorials and documentation. You can visit their forum at PyTorch.org.
  • The entire framework has been developed using the popular programming language Python and the developers have also included Python libraries such as NumPy to conduct scientific computing. For the compilation of Python to C and to provide a better performance, SciPy and Cython have been used. 
  • PyTorch is very easy for data scientists and Python developers because it has similar syntax and utilization.
  • Major cloud platform supports PyTorch.
  • The scripting language of PyTorch is known as TorchScript and it is very easy to use as well as ductile when used in eager mode (eager mode is a specific mode of this framework where operations are executed instantly as they are derived from Python). You can also change to the graph mode if you require better optimization and more speed in C++ runtime settings.
  • PyTorch can effectively support parallel processing, GPU, distributed training, and CPU, which means any computational work can be allocated among various GPU and CPU cores. Furthermore, you can also conduct training on multiple machines using multiple GPUs.
  • Dynamic computational graphs are supported by PyTorch which enables the network behavior to be transitioned during the runtime. This flexible characteristic is a major feature that sets apart PyTorch from the existing deep learning frameworks (because the rest of them require neural networks to be delineated as a static object before runtime.)
  • PyTorch also has a storage of pre-trained models that can be replicated using a single code line.
  • PyTorch as a deep learning framework has both the eager mode (for experiments) and graph mode (for the execution of performance).
  • You can extend the core functionality of your applications using the brilliant APIs of PyTorch.
  • The libraries and tools of PyTorch range from reinforcement learning to computer vision.
  • The pure C++ frontend interface which the python developers are accustomed to is supported by PyTorch and you can also create high-performance C++ applications using the same.
  • In PyTorch, you will be easily able to construct a brand-new custom component as a subclass under the standard Python class.
  • You can easily import the libraries and parameters which can further be efficiently dispensed with the help of TensorBoard (which is an external toolkit.)

Practical use case of PyTorch for data scientists

Due to the PyTorch framework being convenient and flexible, it is being used in multiple projects and applications such as natural language processing, reinforcement learning, image classification, etc. Let us discuss them in brief:

Natural Language Processing (NLP)

If we look at software or virtual assistants, we will be able to understand how machine learning has made significant breakthroughs in understanding natural languages. 

Most of these models utilize a flat sequence of characters or words in the form of recurrent neural networks or RNN to process the sequences. Yet, a lot of linguistics think that language can be comprehended most efficiently if we use a stratified tree of phrases.

That is why a lot of research has been done on the deep learning models which are termed as recursive neural networks that undertake this approach recommended by linguistics. Although these models do have a complex nature and are hard to implement, PyTorch smoothens these difficult natural language processing models to make them much easier and more efficient. Right now, Salesforce is utilizing PyTorch for multi-task learning and NLP.

Computer vision

You can utilize computer neural networks to reinforce the development of image classification, object detection, and generative application. The framework also helps the programmers to process images and videos through which they will be able to construct a detailed and unambiguous computer vision model.

Reinforcement learning

You can easily control the motion of robots, create business development plans and reinforce robotic processes with the help of PyTorch.

How data scientists can work with reinforcement learning with the help of PyTorch

For data scientists, there are multiple use cases of PyTorch in the deep learning field. Moreover, you can experience better results with the implementation of PyTorch in multiple projects regarding style transfer, image classification for identifying fake goods, etc. 

Currently, tech giants are also using PyTorch for natural language processing. If we carefully look at the progress and implementation of PyTorch in the field of deep learning and artificial intelligence, learning this framework as one of your technical abilities can open up lots of future opportunities for you.

Reference links:

https://medium.com/geekculture/how-pytorch-helps-data-scientists-in-reinforcement-learning-a8843e441c1

https://towardsdatascience.com/minimal-pytorch-subset-for-deep-learning-for-data-scientists-8ccbd1ccba6b

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure