How To Install Java With Apt on Ubuntu 18.04

May 31, 2021

Java is one of the most popular programming languages that is used to build various cross-platform applications. Java has been around for a very long time, and it still hasn’t stopped evolving, uniquely combining stability and innovation and staying at the top of the game. Java programs are extremely flexible as they run on any machine, regardless of its architecture or platform. This is possible because most computers, be it Windows, Macintosh, Unix, or Linux, are compatible with the Java Runtime Environment (JRE). If you are a developer looking to install Java on Ubuntu 18.04, you are at the right place.

Before we get into the Ubuntu Java installation process, let us first dive into the prerequisites.
Java Variations
Java comes in three different variations - Standard Edition (SE), Enterprise Edition (EE), and Micro Edition (ME). In this tutorial, we are going to cover only the Standard Edition variation of Java, as this is what most developers use.

There are two different Java packages or bundles in most machine repositories. They are the Java Runtime Environment (JRE) and the Java Development Kit (JDK). As evident from their names, a JRE enables the running of various Java Programs and is usually in-built on every device; but if you wish to code and compile, want developing/debugging tools and libraries, then a JDK does the job for you.

Two major JDKs are popular and are used by developers the most right now - OpenJDK and Oracle Java. Both of them provide the same features, but Oracle Java has some additional commercial features and is used by some business organisations as well. This tutorial covers Ubuntu Java installations of both these packages. If you are unable to decide between OpenJDK and Oracle Java, it’s recommended that you install OpenJDK.
How To Install Java On Ubuntu - OpenJDK (Java 11)
Java 11 SE is the latest version of Java at the time of writing this tutorial. Follow the below-mentioned steps to know how to install Java on Ubuntu 18.04 - OpenJDK package:

Step 1: Open a Terminal Window.

Step 2: Update the apt package index with the syntax given below:
sudo apt update

Step 3: Once the package index is updated, check if Java is already installed using the syntax given below:
java -version
If Java is not installed, you will see the following output:
Command 'java' not found, but can be installed with:

apt install default-jre
apt install openjdk-11-jre-headless
apt install openjdk-8-jre-headless
If Java is already installed, you will see the following output:
openjdk version "11.0.7" 2020-04-14
OpenJDK Runtime Environment (build 11.0.7+10-Ubuntu-3ubuntu118.04.3)
OpenJDK 64-Bit Server VM (build 11.0.7+10-Ubuntu-3ubuntu118.04.3, mixed mode, sharing)

Step 4: If Java is not installed already, here’s the syntax to install it:
sudo apt install default-jdk

Step 5: Once Java is installed, you might want to verify the installation. This can be done by checking the java version as shown below:
java -version
After installation, you’ll see the version of Java installed on your output screen as shown below:
openjdk version "11.0.7" 2020-04-14
OpenJDK Runtime Environment (build 11.0.7+10-Ubuntu-3ubuntu118.04.3)
OpenJDK 64-Bit Server VM (build 11.0.7+10-Ubuntu-3ubuntu118.04.3, mixed mode, sharing)

You have successfully now installed Java on Ubuntu 18.04. If you observe the syntax displayed in the output screen in step 5 (also the second output in step 3), you will know which version of Java you have installed along with the date of installation. In our example, we have installed version 11.0.7 on the 14th of April, 2020.
How To Install Java On Ubuntu - Oracle Java
Oracle’s licensing agreement doesn’t allow automatic Ubuntu Java installation through package managers. To install the Oracle JDK - the official version distributed by Oracle - you must manually download the JDK by creating an Oracle account and adding a new package repository for the actual installation process. Here are the steps you need to follow to install Java on ubuntu - Oracle JDK:

Step 1: Find out the version of the JDK you need to install. This version should match the version of the installer script. To check for the version on the installer script, visit the oracle-java11-installer page and look for the “bionic” package, beside which you will find the version you need to install. Let’s say it’s version 11.0.7 for instance.

Step 2: Visit the Oracle Downloads Page, and locate the version you need. Since you’ve to install Java on Ubuntu, you need to look for the .tar.gz package that’s compatible with Linux. You will be asked to agree to Oracle’s license agreement and only then start the download.

Step 3: Once the file download is complete, upload the file to the server on your local machine.

Step 4: Now you need to add a third-party repository that will let you install Oracle’s Java. The real Ubuntu Java Installation process begins here.

Step 5: Install the dependencies required to add a new repository. Type in the following command:
sudo apt install software-properties-common

Step 6: Enable Linux Uprising PPA by importing the signing key used to verify any software install:
sudo apt-key adv --keyserver --recv-keys EA8CACC073C3DB2A
You’ll see the following output:
gpg: key EA8CACC073C3DB2A: public key "Launchpad PPA for Linux Uprising" imported
gpg: Total number processed: 1
gpg: imported: 1

Step 7: Use the add-apt-repository command to add the repo to your list of package sources:
sudo add-apt-repository ppa:linuxuprising/java
This is the message you will see on the output screen:
Oracle Java 11 (LTS) and 12 installer for Ubuntu, Linux Mint and Debian.

Java binaries are not hosted in this PPA due to licensing. The packages in this PPA download and install Oracle Java 11, so a working Internet connection is required.

The packages in this PPA are based on the WebUpd8 Oracle Java PPA packages:

Created for users of

Installation instructions (with some tips), feedback, suggestions, bug reports etc.:

. . .

Press [ENTER] to continue or ctrl-c to cancel adding it
Press ENTER to continue with the installation process.

Step 8: Once the repository is added, update your package list to make the new software available for Ubuntu Java installation:
sudo apt update

Step 9: The Oracle JDK file you downloaded should be in /var/cache/oracle-jdk11-installer-local. Create this directory and move the Oracle JDK archive there:
sudo mkdir -p /var/cache/oracle-jdk11-installer-local/
sudo cp jdk-11.0.7_linux-x64_bin.tar.gz /var/cache/oracle-jdk11-installer-local/

Step 10: Finally, install the package:
sudo apt install oracle-java11-installer-local

Accept the license agreement, after which the installer will extract the Java package and install it.

You have now successfully completed installing Java on Ubuntu - Oracle JDK package.
Final Word
We now hope that this tutorial gave you clarity concerning both the concepts behind basic Java packages and how to install Java on Ubuntu. Ubuntu servers are widely used by developers who use Java. Are you one among them? Did you follow this tutorial for your Ubuntu Java installation?

If you are a programmer, then you definitely need cloud services to manage your files and documents. You should check out E2E cloud solutions provided by us at E2E Cloud. We are trusted by 3000 clients all over the world, and we are known to satisfy our customers with quality cloud solutions at affordable rates. Check for yourself!

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links

This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links

This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure