7 Best GPUs for Deep Learning & AI in 2023

May 19, 2023

Deep learning is a field with extraordinary computational requirements, so your choice of GPU will inherently determine your experience with deep learning. What features are essential if you buy a new GPU? Is it GPU RAM, cores, tensor cores, caches? How do you make a cost-efficient choice? This blog post will examine these questions, tackle misconceptions, and help you acquire an intuitive understanding of how to think about GPUs. 

But first, what do GPUs do? GPUs provide the computational power needed for efficient training and inference processes. While GPUs were initially designed for rendering graphics in gaming and visualization applications, their parallel architecture and ability to perform complex mathematical calculations have made them well-suited for accelerating machine learning tasks.

Why GPUs for Model Training?

The most resource intensive phase of model development is the training phase. It involves intensive computing on large datasets that may  take days to run on a single processor. This process can be completed in shorter time periods if the number of parameters is low, but as the number increases, the training time also increases. 

Graphics Processing Units (GPUs) can greatly accelerate the training process for many Deep Learning models. Training models for tasks like image classification, video analysis, and Natural Language Processing involves compute-intensive matrix multiplication and other operations that can take advantage of a GPU's massively parallel architecture. However, if you can transfer these tasks to GPUs, the training time will be reduced significantly. 

GPUs enable you to run models with a huge number of parameters efficiently and in shorter times. This is because GPUs can run several training tasks in parallel. They are also optimized to perform target tasks, finishing computations faster than non-specialized hardware. These processors enable you to process the same tasks faster and free your CPUs for other tasks. 

Factors to Consider While Choosing a GPU

Choosing the right GPU for AI workloads is crucial to ensure optimal performance and efficiency. As AI tasks involve complex computations and large datasets, selecting a GPU that can handle these requirements is important. Several factors have to be considered when making this decision. By carefully evaluating these factors, you can make an informed choice and select a GPU that best suits your AI needs.

CUDA Cores and Architecture

CUDA (Compute Unified Device Architecture) cores are the processing units in NVIDIA GPUs that are specifically designed for parallel computing. More CUDA cores generally lead to better performance for AI tasks. Additionally, consider the GPU architecture, as newer architectures often offer improved performance and efficiency.

Memory Capacity and Bandwidth

AI workloads often require large amounts of memory to handle extensive datasets and complex models. Ensure that the GPU has sufficient memory capacity (VRAM). Additionally, pay attention to memory bandwidth, as it affects the speed at which data can be transferred between the GPU and its memory.

Multi-GPU Scalability

If you anticipate running large-scale AI workloads or training complex models, check if the GPU supports multi-GPU configurations, such as SLI (Scalable Link Interface) or NVLink. This allows multiple GPUs to work together, providing increased processing power.

Price and Budget

GPUs vary in price depending on their performance and capabilities. Consider your budget and the cost-effectiveness of the GPU in relation to your specific AI requirements.

Best GPUs for AI Model Training

As the demand for efficient and powerful GPUs continues to rise, it's crucial to identify the top performers that can accelerate Machine Learning workflows effectively. It is important to remember that each use case may have different requirements, which is why it is important to consider all specifications. Here is a list of 7 GPUs that can work well for your AI training workload. By understanding their specifications and features, you can make informed decisions when choosing the right GPU for your Machine Learning projects.

NVIDIA Tesla A100

The A100 GPU has multi-instance GPU technology and can be partitioned into 7 GPU instances for any size workload. It can be scaled up to thousands of units and was designed for Machine Learning, data analytics, and HPC. The NVIDIA Tesla A100 is built on the Ampere architecture and features 6,912 CUDA cores. Each Tesla A100 provides up to 624 teraflops performance, 80GB memory, 1,935 GB/s memory bandwidth, and 600GB/s interconnects. The NVIDIA A100 GPU is widely adopted in various industries and research fields, where it excels at demanding AI training workloads, such as training large-scale deep neural networks for image recognition, natural language processing, and other AI applications.

NVIDIA Tesla V100

The V100 is built on the NVIDIA Volta architecture, which introduces advancements in GPU architecture, including the use of Tensor Cores and improved CUDA cores for accelerated computing. It comes in 16 and 32GB configurations, and offers the performance of up to a 100 CPUs in a single GPU.

It has 640 Tensor Cores and is the first GPU to break the 100 TFLOPS barrier. The NVIDIA NVLink connects several V100 GPUs to create powerful computing servers. In this way, AI models that would consume weeks of computing resources on previous systems can now be trained in a few days. 


The NVIDIA A40 is a powerful computing device specifically built to enhance the processing capabilities of complex visual computing workloads in data centers. It incorporates advanced technologies like the NVIDIA Ampere architecture, featuring RT Cores, Tensor Cores, and CUDA Cores. With 48 GB of graphics memory, the A40 is well-equipped for demanding tasks such as virtual workstations and specialized rendering. By bringing the next-generation NVIDIA RTX technology to the data center, the A40 serves as an optimal solution for advanced professional visualization tasks, providing cutting-edge performance.


The NVIDIA A30 Tensor Core GPU is a versatile compute GPU that utilizes Ampere architecture Tensor Core Technology. It is specifically designed for mainstream enterprise workloads and AI inference, offering support for various math precisions to enhance performance across a wide range of tasks. With its focus on AI inference at scale, the A30 Tensor Core GPU enables rapid re-training of AI models using TF32. Additionally, it provides acceleration for high-performance computing applications through FP64 Tensor Cores.

The A30's compute capabilities are highly valuable due to the combination of third-generation Tensor Cores and MIG (Multi-Instance GPU) technology, which ensures secure quality of service across diverse workloads. This versatility is made possible by the GPU's elastic nature, allowing for efficient utilization within a data center environment.


The integration of the NVIDIA L4 Tensor Core GPU into E2E Cloud's portfolio acknowledges the significance of equipping customers with cutting-edge and energy-efficient hardware. This powerful solution caters to the needs of data scientists, technology professionals, and individuals seeking exceptional performance in their cloud-based workloads.


The NVIDIA T4 GPU possesses exceptional deep learning capabilities. Boasting 16 GB of high-speed GDDR6 memory and 320 Turing Tensor Cores, it delivers outstanding performance in both training and inference tasks for deep neural networks. By harnessing mixed-precision computations and INT8 precision, the T4 GPU achieves accelerated training times and enhanced throughput, resulting in significant speed and efficiency improvements.

Launching a GPU on E2E Cloud

To launch a GPU using E2E Cloud’s MyAccount, you can sign in to your MyAccount portal on the E2E Networks website. After logging in, you will see the following screen.

 Click on Compute and select GPU from the dropdown menu. 

You will see the following screen when you choose GPU, with the options E2E Cloud offers for you AI/ML workloads.

Click on Create to launch the machine of your choice. 

You can choose the pricing option as per your requirement.

Fill in all the details and launch the machine.

Launching a GPU on E2E Cloud’s MyAccount is a simple process. In case of any further help, feel free to get in touch with sales@e2enetworks.com.

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links




This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links



This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links



This is a decorative image for: GAUDI: A Neural Architect for Immersive 3D Scene Generation
October 13, 2022

GAUDI: A Neural Architect for Immersive 3D Scene Generation

The evolution of artificial intelligence in the past decade has been staggering, and now the focus is shifting towards AI and ML systems to understand and generate 3D spaces. As a result, there has been extensive research on manipulating 3D generative models. In this regard, Apple’s AI and ML scientists have developed GAUDI, a method specifically for this job.

An introduction to GAUDI

The GAUDI 3D immersive technique founders named it after the famous architect Antoni Gaudi. This AI model takes the help of a camera pose decoder, which enables it to guess the possible camera angles of a scene. Hence, the decoder then makes it possible to predict the 3D canvas from almost every angle.

What does GAUDI do?

GAUDI can perform multiple functions –

  • The extensions of these generative models have a tremendous effect on ML and computer vision. Pragmatically, such models are highly useful. They are applied in model-based reinforcement learning and planning world models, SLAM is s, or 3D content creation.
  • Generative modelling for 3D objects has been used for generating scenes using graf, pigan, and gsn, which incorporate a GAN (Generative Adversarial Network). The generator codes radiance fields exclusively. Using the 3D space in the scene along with the camera pose generates the 3D image from that point. This point has a density scalar and RGB value for that specific point in 3D space. This can be done from a 2D camera view. It does this by imposing 3D datasets on those 2D shots. It isolates various objects and scenes and combines them to render a new scene altogether.
  • GAUDI also removes GANs pathologies like mode collapse and improved GAN.
  • GAUDI also uses this to train data on a canonical coordinate system. You can compare it by looking at the trajectory of the scenes.

How is GAUDI applied to the content?

The steps of application for GAUDI have been given below:

  • Each trajectory is created, which consists of a sequence of posed images (These images are from a 3D scene) encoded into a latent representation. This representation which has a radiance field or what we refer to as the 3D scene and the camera path is created in a disentangled way. The results are interpreted as free parameters. The problem is optimized by and formulation of a reconstruction objective.
  • This simple training process is then scaled to trajectories, thousands of them creating a large number of views. The model samples the radiance fields totally from the previous distribution that the model has learned.
  • The scenes are thus synthesized by interpolation within the hidden space.
  • The scaling of 3D scenes generates many scenes that contain thousands of images. During training, there is no issue related to canonical orientation or mode collapse.
  • A novel de-noising optimization technique is used to find hidden representations that collaborate in modelling the camera poses and the radiance field to create multiple datasets with state-of-the-art performance in generating 3D scenes by building a setup that uses images and text.

To conclude, GAUDI has more capabilities and can also be used for sampling various images and video datasets. Furthermore, this will make a foray into AR (augmented reality) and VR (virtual reality). With GAUDI in hand, the sky is only the limit in the field of media creation. So, if you enjoy reading about the latest development in the field of AI and ML, then keep a tab on the blog section of the E2E Networks website.

Reference Links




Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure