Optimization in deep learning- Learn with examples

June 24, 2022

 

Deep learning relies on optimization methods. Training a complicated deep learning model, on the other hand, might take hours, days, or even weeks. The training efficiency of the model is directly influenced by the optimization algorithm's performance. Understanding the fundamentals of different optimization algorithms and the function of their hyperparameters, on the other hand, will allow us to modify hyperparameters in a targeted manner to improve deep learning model performance. 

In this blog, we'll go through some of the most popular deep learning optimization techniques in detail.

Table of Content:

  1. The goal of Optimization in Deep learning

  1. Gradient Descent Deep Learning Optimizer 

  1. Stochastic Gradient Descent Deep Learning Optimizer 

  1. Mini-batch Stochastic Gradient Descent

  1. Adagrad(Adaptive Gradient Descent) Optimizer 

  1. RMSprop (Root Mean Square) Optimizer

  1. Adam Deep Learning Optimizer  

  1. AdaDelta Deep Learning Optimizer

The goal of Optimization in Deep learning-

Although optimization may help deep learning by lowering the loss function, the aims of optimization and deep learning are fundamentally different. The former is more focused on minimizing an objective, whereas the latter is more concerned with finding a good model given a finite quantity of data. Training error and generalization error, for example, vary in that the optimization algorithm's objective function is usually a loss function based on the training dataset, and the purpose of optimization is to minimize training error. Deep learning (or, to put it another way, statistical inference) aims to decrease generalization error. In order to achieve the latter, we must be aware of overfitting as well as use the optimization procedure to lower the training error.

Gradient Descent Deep Learning Optimizer-

Gradient Descent is the most common optimizer in the class. Calculus is used in this optimization process to make consistent changes to the parameters and reach the local minimum. Before you go any further, you might be wondering what a gradient is? 

Consider that you are holding a ball that is lying on the rim of a bowl. When you lose the ball, it travels in the steepest direction until it reaches the bowl's bottom. A gradient directs the ball in the steepest way possible to the local minimum, which is the bowl's bottom.

Gradient descent works with a set of coefficients, calculates their cost, and looks for a cost value that is lower than the current one. It shifts to a lesser weight and updates the values of the coefficients. The procedure continues until the local minimum is found. A local minimum is a point beyond which it is impossible to go any farther.

For the most part, gradient descent is the best option. It does, however, have significant drawbacks. Calculating the gradients is time-consuming when the data is large. For convex functions, gradient descent works well, but it doesn't know how far to travel down the gradient for nonconvex functions.

Stochastic Gradient Descent Deep Learning Optimizer-

On large datasets, gradient descent may not be the best solution. We use stochastic gradient descent to solve the problem. The word stochastic refers to the algorithm's underlying unpredictability. Instead of using the entire dataset for each iteration, we use a random selection of data batches in stochastic gradient descent. As a result, we only sample a small portion of the dataset. The first step in this technique is to choose the starting parameters and learning rate. Then, in each iteration, mix the data at random to get an estimated minimum. When compared to the gradient descent approach, the path taken by the algorithm is full of noise since we are not using the entire dataset but only chunks of it for each iteration.

As a result, SGD requires more iterations to attain the local minimum. The overall computing time increases as the number of iterations increases. However, even when the number of iterations is increased, the computation cost remains lower than that of the gradient descent optimizer. As a result, if the data is large and the processing time is a consideration, stochastic gradient descent should be favored over batch gradient descent.

Mini-batch Stochastic Gradient Descent-

Mini batch SGD straddles the two preceding concepts, incorporating the best of both worlds. It takes training samples at random from the entire dataset (the so-called mini-batch) and computes gradients just from these. By sampling only a fraction of the data, it aims to approach Batch Gradient Descent.

We require fewer rounds because we're utilizing a chunk of data rather than the entire dataset. As a result, the mini-batch gradient descent technique outperforms both stochastic and batch gradient descent algorithms. This approach is more efficient and reliable than previous gradient descent variations. Because the method employs batching, all of the training data does not need to be placed into memory, making the process more efficient. In addition, the cost function in mini-batch gradient descent is noisier than that in batch gradient descent but smoother than that in stochastic gradient descent. Mini-batch gradient descent is therefore excellent and delivers a nice mix of speed and precision.

Mini-batch SGD is the most often utilized version in practice since it is both computationally inexpensive and produces more stable convergence.

Adagrad(Adaptive Gradient Descent) Optimizer -

Adagrad keeps a running total of the squares of the gradient in each dimension, and we adjust the learning rate depending on that total in each update. As a result, each parameter has a variable learning rate (or an adaptive learning rate). Furthermore, when we use the root of the squared gradients, we only consider the magnitude of the gradients, not the sign. We can observe that the learning rate is reduced when the gradient changes rapidly. The learning rate will be higher when the gradient changes slowly. Due to the monotonic growth of the running squared sum, one of Adagrad's major flaws is that the learning rate decreases with time.

RMSprop (Root Mean Square) Optimizer-

Among deep learning aficionados, the RMS prop is a popular optimizer. This might be due to the fact that it hasn't been published but is nonetheless well-known in the community. RMS prop is a natural extension of RPPROP's work. The problem of fluctuating gradients is solved by RPPROP. The issue with the gradients is that some were modest while others may be rather large. As a result, establishing a single learning rate may not be the ideal option. RPPROP adjusts the step size for each weight based on the sign of the gradient. The two gradients are initially compared for signs in this technique.

Adam Deep Learning Optimizer-

To update network weights during training, this optimization approach is a further development of stochastic gradient descent. Unlike SGD, Adam optimizer modifies the learning rate for each network weight independently, rather than keeping a single learning rate for the entire training. The Adam optimizers inherit both Adagrad and RMS prop algorithm characteristics. Instead of using the first moment (mean) like in RMS Prop, Adam employs the second moment of the gradients to modify learning rates. We take the second instance of the gradients to imply the uncentered variance (we don't remove the mean).

AdaDelta Deep Learning Optimizer -

AdaDelta is a more powerful variant of the AdaGrad optimizer. It is based on adaptive learning and is intended to address the major shortcomings of AdaGrad and the RMS prop optimizer. The fundamental disadvantage of the two optimizers mentioned above is that the starting learning rate must be set manually. Another issue is the decreasing learning rate, which eventually becomes infinitesimally tiny. As a result, after a given number of iterations, the model can no longer acquire new information.

Conclusion-

This is a comprehensive explanation of the various optimization methods utilized in Deep Learning. We went through three different types of gradient descent and then moved on to additional optimizer techniques. There is still a lot of work to be done in the field of optimization. 

However, for the time being, it is critical to understand your needs and the type of data you are working with in order to select the finest optimization technique and obtain excellent outcomes.

Latest Blogs
This is a decorative image for Project Management for AI-ML-DL Projects
June 29, 2022

Project Management for AI-ML-DL Projects

Managing a project properly is one of the factors behind its completion and subsequent success. The same can be said for any artificial intelligence (AI)/machine learning (ML)/deep learning (DL) project. Moreover, efficient management in this segment holds even more prominence as it requires continuous testing before delivering the final product.

An efficient project manager will ensure that there is ample time from the concept to the final product so that a client’s requirements are met without any delays and issues.

How is Project Management Done For AI, ML or DL Projects?

As already established, efficient project management is of great importance in AI/ML/DL projects. So, if you are planning to move into this field as a professional, here are some tips –

  • Identifying the problem-

The first step toward managing an AI project is the identification of the problem. What are we trying to solve or what outcome do we desire? AI is a means to receive the outcome that we desire. Multiple solutions are chosen on which AI solutions are built.

  • Testing whether the solution matches the problem-

After the problem has been identified, then testing the solution is done. We try to find out whether we have chosen the right solution for the problem. At this stage, we can ideally understand how to begin with an artificial intelligence or machine learning or deep learning project. We also need to understand whether customers will pay for this solution to the problem.

AI and ML engineers test this problem-solution fit through various techniques such as the traditional lean approach or the product design sprint. These techniques help us by analysing the solution within the deadline easily.

  • Preparing the data and managing it-

If you have a stable customer base for your AI, ML or DL solutions, then begin the project by collecting data and managing it. We begin by segregating the available data into unstructured and structured forms. It is easy to do the division of data in small and medium companies. It is because the amount of data is less. However, other players who own big businesses have large amounts of data to work on. Data engineers use all the tools and techniques to organise and clean up the data.

  • Choosing the algorithm for the problem-

To keep the blog simple, we will try not to mention the technical side of AI algorithms in the content here. There are different types of algorithms which depend on the type of machine learning technique we employ. If it is the supervised learning model, then the classification helps us in labelling the project and the regression helps us predict the quantity. A data engineer can choose from any of the popular algorithms like the Naïve Bayes classification or the random forest algorithm. If the unsupervised learning model is used, then clustering algorithms are used.

  • Training the algorithm-

For training algorithms, one needs to use various AI techniques, which are done through software developed by programmers. While most of the job is done in Python, nowadays, JavaScript, Java, C++ and Julia are also used. So, a developmental team is set up at this stage. These developers make a minimum threshold that is able to generate the necessary statistics to train the algorithm.  

  • Deployment of the project-

After the project is completed, then we come to its deployment. It can either be deployed on a local server or the Cloud. So, data engineers see if the local GPU or the Cloud GPU are in order. And, then they deploy the code along with the required dashboard to view the analytics.

Final Words-

To sum it up, this is a generic overview of how a project management system should work for AI/ML/DL projects. However, a point to keep in mind here is that this is not a universal process. The particulars will alter according to a specific project. 

Reference Links:

https://www.datacamp.com/blog/how-to-manage-ai-projects-effectively

https://appinventiv.com/blog/ai-project-management/#:~:text=There%20are%20six%20steps%20that,product%20on%20the%20right%20platform.

https://www.datascience-pm.com/manage-ai-projects/

https://community.pmi.org/blog-post/70065/how-can-i-manage-complex-ai-projects-#_=_

This is a decorative image for Top 7 AI & ML start-ups in Telecom Industry in India
June 29, 2022

Top 7 AI & ML start-ups in Telecom Industry in India

With the multiple technological advancements witnessed by India as a country in the last few years, deep learning, machine learning and artificial intelligence have come across as futuristic technologies that will lead to the improved management of data hungry workloads.

 

The availability of artificial intelligence and machine learning in almost all industries today, including the telecom industry in India, has helped change the way of operational management for many existing businesses and startups that are the exclusive service providers in India.

 

In addition to that, the awareness and popularity of cloud GPU servers or other GPU cloud computing mediums have encouraged AI and ML startups in the telecom industry in India to take up their efficiency a notch higher by combining these technologies with cloud computing GPU. Let us look into the 7 AI and ML startups in the telecom industry in India 2022 below.

 

Top AI and ML Startups in Telecom Industry 

With 5G being the top priority for the majority of companies in the telecom industry in India, the importance of providing network affordability for everyone around the country has become the sole mission. Technologies like artificial intelligence and machine learning are the key digital transformation techniques that can change the way networks rotates in the country. The top startups include the following:

Wiom

Founded in 2021, Wiom is a telecom startup using various technologies like deep learning and artificial intelligence to create a blockchain-based working model for internet delivery. It is an affordable scalable model that might incorporate GPU cloud servers in the future when data flow increases. 

TechVantage

As one of the companies that are strongly driven by data and unique state-of-the-art solutions for revenue generation and cost optimization, TechVantage is a startup in the telecom industry that betters the user experiences for leading telecom heroes with improved media generation and reach, using GPU cloud online

Manthan

As one of the strongest performers is the customer analytics solutions, Manthan is a supporting startup in India in the telecom industry. It is an almost business assistant that can help with leveraging deep analytics for improved efficiency. For denser database management, NVIDIA A100 80 GB is one of their top choices. 

NetraDyne

Just as NVIDIA is known as a top GPU cloud provider, NetraDyne can be named as a telecom startup, even if not directly. It aims to use artificial intelligence and machine learning to increase road safety which is also a key concern for the telecom providers, for their field team. It assists with fleet management. 

KeyPoint Tech

This AI- and ML-driven startup is all set to combine various technologies to provide improved technology solutions for all devices and platforms. At present, they do not use any available cloud GPU servers but expect to experiment with GPU cloud computing in the future when data inflow increases.

 

Helpshift

Actively known to resolve customer communication, it is also considered to be a startup in the telecom industry as it facilitates better communication among customers for increased engagement and satisfaction. 

Facilio

An AI startup in Chennai, Facilio is a facility operation and maintenance solution that aims to improve the machine efficiency needed for network tower management, buildings, machines, etc.

 

In conclusion, the telecom industry in India is actively looking to improve the services provided to customers to ensure maximum customer satisfaction. From top-class networking solutions to better management of increasing databases using GPU cloud or other GPU online services to manage data hungry workloads efficiently, AI and MI-enabled solutions have taken the telecom industry by storm. Moreover, with the introduction of artificial intelligence and machine learning in this industry, the scope of innovation and improvement is higher than ever before.

 

 

References

https://www.inventiva.co.in/trends/telecom-startup-funding-inr-30-crore/

https://www.mygreatlearning.com/blog/top-ai-startups-in-india/

This is a decorative image for Top 7 AI Startups in Education Industry
June 29, 2022

Top 7 AI Startups in Education Industry

The evolution of the global education system is an interesting thing to watch. The way this whole sector has transformed in the past decade can make a great case study on how modern technology like artificial intelligence (AI) makes a tangible difference in human life. 

In this evolution, edtech startups have played a pivotal role. And, in this write-up, you will get a chance to learn about some of them. So, read on to explore more.

Top AI Startups in the Education Industry-

Following is a list of education startups that are making a difference in the way this sector is transforming –

  1. Miko

Miko started its operations in 2015 in Mumbai, Maharashtra. Miko has made a companion for children. This companion is a bot which is powered by AI technology. The bot is able to perform an array of functions like talking, responding, educating, providing entertainment, and also understanding a child’s requirements. Additionally, the bot can answer what the child asks. It can also carry out a guided discussion for clarifying any topic to the child. Miko bots are integrated with a companion app which allows parents to control them through their Android and iOS devices. 

  1. iNurture

iNurture was founded in 2005 in Bengaluru, Karnataka. It provides universities assistance with job-oriented UG and PG courses. It offers courses in IT, innovation, marketing leadership, business analytics, financial services, design and new media, and design. One of its popular products is KRACKiN. It is an AI-powered platform which engages students and provides employment with career guidance. 

  1. Verzeo

Verzeo started its operations in 2018 in Bengaluru, Karnataka. It is a platform based on AI and ML. It provides academic programmes involving multi-disciplinary learning that can later culminate in getting an internship. These programmes are in subjects like artificial intelligence, machine learning, digital marketing and robotics.

  1. EnglishEdge 

EnglishEdge was founded in Noida in 2012. EnglishEdge provides courses driven by AI for getting skilled in English. There are several programmes to polish your English skills through courses provided online like professional edge, conversation edge, grammar edge and professional edge. There is also a portable lab for schools using smart classes for teaching the language. 

  1. CollPoll

CollPoll was founded in 2013 in Bengaluru, Karnataka. The platform is mobile- and web-based. CollPoll helps in managing educational institutions. It helps in the management of admission, curriculum, timetable, placement, fees and other features. College or university administrators, faculty and students can share opinions, ideas and information on a central server from their Android and iOS phones.

  1. Thinkster

Thinkster was founded in 2010 in Bengaluru, Karnataka. Thinkster is a program for learning mathematics and it is based on AI. The program is specifically focused on teaching mathematics to K-12 students. Students get a personalised experience as classes are conducted in a one-on-one session with the tutors of mathematics. Teachers can give scores for daily worksheets along with personalised comments for the improvement of students. The platform uses AI to analyse students’ performance. You can access the app through Android and iOS devices.

  1. ByteLearn 

ByteLearn was founded in Noida in 2020. ByteLean is an assistant driven by artificial intelligence which helps mathematics teachers and other coaches to tutor students on its platform. It provides students attention in one-on-one sessions. ByteLearn also helps students with personalised practice sessions.

Key Highlights

  • High demand for AI-powered personalised education, adaptive learning and task automation is steering the market.
  • Several AI segments such as speech and image recognition, machine learning algorithms and natural language processing can radically enhance the learning system with automatic performance assessment, 24x7 tutoring and support and personalised lessons.
  • As per the market reports of P&S Intelligence, the worldwide AI in the education industry has a valuation of $1.1 billion as of 2019.
  • In 2030, it is projected to attain $25.7 billion, indicating a 32.9% CAGR from 2020 to 2030.

Bottom Line

Rising reliability on smart devices, huge spending on AI technologies and edtech and highly developed learning infrastructure are the primary contributors to the growth education sector has witnessed recently. Notably, artificial intelligence in the education sector will expand drastically. However, certain unmapped areas require innovations.

With experienced well-coordinated teams and engaging ideas, AI education startups can achieve great success.

Reference Links:

https://belitsoft.com/custom-elearning-development/ai-in-education/ai-in-edtech

https://www.emergenresearch.com/blog/top-10-leading-companies-in-the-artificial-intelligence-in-education-sector-market

https://xenoss.io/blog/ai-edtech-startups

https://riiid.com/en/about

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure