Benefits of Using a vGPU

February 1, 2021

Traditionally, Desktop or PC have limited CPU computation level to run 3D applications. But with virtualization, this trend has changed remarkably in the last few years. You can now easily add more vGPUs units to any system to enhance its performance and get things done efficiently. This change offers a smart way for businesses to deliver performance for their end-user whenever required.

Understanding Virtual GPU (Graphics Processing Units)

There has been an unprecedented rise in the graphic requirements from Windows 10 up at 32 percent from the earlier version of Windows 7. (source) 

Today, all latest software with their utility and productivity apps require extra CPU resources to carry out their regular functions such as Chrome, Microsoft Office, Skype, Word, gaming, and all other applications. There has been a constant need to upgrade the software to improve its user experience that directly depends on the GPU or CPU usage.

Especially for commercial needs, businesses further need that extra virtual GPU to match their specific requirements. Most businesses today need additional virtual machine capabilities to improve their performance and compete within the industry. Thus can avoid extra costs by using virtual GPUs depending on their workplace requirements rather than buying them for higher costs. These virtual GPU cloud servers can easily integrate with your current infrastructure and deliver exceptional results with an instant performance boost for matching your business requirements.

And with E2E Networks, you get a one-click GPU Cloud to run a powerful application such as Tensorflow to manage Machine learning or any other complex architecture. We offer the world premium NVIDIA T4, NVIDIA Tesla V100, and NVIDIA RTX 8000 machines to bring forth the best possible resources for businesses to match all kinds of workload requirements.

vGPUs can easily integrate additional capabilities into the system and help deliver exceptional results with ease. 

Here are the essential benefits of using a Virtual GPU (VGPU) that everyone should know in this modern age.

1. Performance Enhancement

The first and the most significant benefit from vGPUs is the performance enhancement from desktop and virtual machines. Businesses today can opt for these virtual GPUs to get that extra leverage to match with high data processing ability. 

For instance, CannonDesign was able to bring a newer virtual workstation for every 10 minutes with higher user density and twice the performance. 

Cornerstone Home Lending integrated has more than 100 branches and 1000 users within a single virtual environment from its desktop workload to deliver smooth and uniform performance across every user.

Several activities today need additional GPU acceleration to perform, such as Image processing, video processing, 3D, 4D, or 5D modeling, and rendering, image segmentation, facial recognition, data processing and analyzing, medical imaging, real-time recognition, etc. And with every data or user increase in the organization, these resources can put extra pressure on the system to deliver results. Here virtual GPUs can be a tremendous relief as they can bring in more resources at the time of requirement for the system to process and deliver a smooth user experience. E2E offers NVIDIA T4 instances for special deep learning solutions for businesses to enhance image processing and segmentation solutions in running real-time applications. These have worked in parallel with various organizations in developing computer vision technology for generating capabilities similar to human vision.

2. GPU Memory Usage

Virtual GPUs can also be used to add more memory for the system to increase their ability to perform higher ability tasks. Different slabs for the NVIDIA GPU cloud are available. Businesses can use the power of 16GB, 32GB, 40GB, 48GB, 64GB, 80GB, 96 GB, and up to 128GB to maximize their system performance to handle large data applications.

NVIDIA RTX server has excellent capacities to run powerful software such as Autodesk Maya., etc., to give end-users impeccable solutions. With a virtual machine, you can create, build, and deliver spectacular animations for businesses to work at par excellence. You can also add special effects for lighting and rendering along with all best practices under the GPU virtualization with high performance as always.

NVIDIA vGPUs are among the only technology that supports accelerated live migration of platforms using their virtual machines. And when the system needs additional resources to distribute, enhanced uptime, data optimization, and avoid troubleshooting, these Virtual GPUs are the ideal solution today. The whole system infrastructure can help manage and control workloads across multiple machines as per the user requirements to match the demands accordingly.

3. Improved Driver Support 

Systems need further driver support to run and manage large data frameworks to process and precisely understand the information. Virtual space can help to distribute ability across premises to add more capabilities for working with multimedia and powerful creative work applications in the virtual setups.

NVIDIA GPU Server can provide high density for monitoring systems and adding more tracking information for central management. Businesses also use them to enhance server-side graphic abilities and administrative proficiency and get more results from current IT architecture.

With the work from home environment getting more prowess in this Pandemic year, Businesses are also using virtual GPU servers to track virtual workflow procedures. This can add multiple tasks tracking abilities within a system such as image rendering, video rendering both at the same time.

4. Video Experience

With the continuous enhancement, today, videos are common among the users. Videos require additional resources from the backend to give a live presentation for users. Technology has improved to show 3D, 4D, or even 5D capabilities that offer businesses change their infrastructure rapidly. But with virtual GPUs, these businesses can leverage the latest NVIDIA GPU cloud to get sophisticated technology at hourly or monthly prices rather than buying them for a specific use. Thus delivering a smooth user experience for users with a virtual enhancement of their hardware resources.

5. Gaming Experience 

Gaming is another essential dimension that has improved significantly in the last decade. More and more businesses are turning to virtual GPU cloud servers to gain additional resources for their system. Newer Games use more advanced technology with AR/VR (Augmented Reality and Virtual Reality) games. These modern games offer rich features and functionality for users to enjoy requiring ultra-high resources to deliver a smooth experience. While Mobile Edge computing (MEC) even requires higher frame rates to give users the right gaming experience. And with Networks communicating at a 5G rate and streamlined data processing, systems today work on virtual GPUs to give users an incredible experience throughout the game.

NVIDIA vGPU solutions are highly sophisticated these days and offer up to 160 PC games for running them at one point. Especially for games, latency is a crucial factor for Virtual GPUs. And E2E Networks now offer several opportunities for gaming enthusiasts to get their specific GPU solutions in maximizing their profits.

Gaming is a really big industry today in several countries, with more interest coming from the younger generation. More and more complex resource requirements also put a lot of pressure on the system that only matches the modern cloud GPU solutions. The manufacturers and gaming organizations use these cloud GPU solutions to get more and more users to enjoy a smooth experience throughout. 

6. Cost Affordability 

Yes, one of the main benefits you can achieve with a Cloud GPU server is its affordability. At a specific cost, you can get the power of the world's best system performance to any virtual machine or desktop application.

E2E Networks can seamlessly connect with any business vertical to give you enhanced performance for any AI/ML workload and deliver data processing. And businesses will pay for what they use and still get customized solutions without affecting their extra spending.

You can check the NVIDIA tesla price to match with a customized graphic processor, GPU memory, disk space, dedicated RAM, and get hourly or monthly prices, to deliver desired results for your business at any requirements. You can create and build even a custom virtual machine to compare prices and then find the exact solutions for your workload for performing at specific requirements.

You can also opt for NVIDIA vGPUs trial to understand the whole user experience and then buy the services to get more customized solutions for matching your specific business requirements.

7. Working with Private Cloud/ Customization / Multi GPUs

E2E Networks also offer private GPUs that experts can customize as per any requirements with a dedicated server and get the desired performance. There are also hundreds of pre-packed offers that businesses can easily access with one-click to integrate with their current system for enhancing performance.

This can boost the current IT architecture to match with any higher resource requirement. So, bridging the gap for businesses to work with high-data processing needs without having a significant impact on their infrastructure costs. E2E Networks have several options for businesses to get customized solutions and bring forthright solutions for their clients as per the requirement rather than investing heavily in the hardware resources.

These modern virtual machines are highly compatible as well, and you can connect almost any workstation to enhance their performance. 


Today VGPUs have become a phenomenon across industries, with businesses using them to leverage their current architecture based on their requirements. E2E Networks is a reliable and trusted organization by more than 10000+ clients nationally and internationally. Almost every industry is now using GPU Cloud server ability to work and collaborate with real-time users, such as Creative Cloud (Adobe), Bentley Microstation, Maya Autodesk, Dassault Systemes SOLIDWORKS, PACS (Picture Archiving and Communication System), Reuters, Bloomberg, Eikon, Eclipse Medical imaging, and also major electronic trading platforms have been using these cloud GPU servers to manage their workloads precisely. 

  1. GPU cloud has become a prominent feature in working with top industry applications such as Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). These are the futuristic technologies that can work at a rapid pace for training data models for predicting and decision making in algorithms. These can take data from any industry and then understand their pattern to drive their strategies and planning for the future.
  1. Computer Vision has become elemental technology, using deep learning technology for facial recognition, video analysis, medical imaging, etc.
  1. Computational Finance today needs extra security and technology to protect information from the cyber world and real-time challenging scenarios.
  1. Modern Scientific Research today needs that extra powerful GPU power to manage big data processing ability for delivering results in the latest fields of fluid dynamics, molecular modeling, and many more. Scientists enjoy working on these powerful systems for delivering more results and bringing more futuristic solutions. 
  1. The Big Data industry has become the primary revolution for next-generation success. Data has grown profoundly in the last few years as more and more industries are using this information to gain an extra advantage over their competitors. Now the system needs that GPU power to handle this voluminous data at ease.

Graphical Processing Units (GPUs) today are the fundamental blocks for managing big data processing technology. And with virtual GPU (vGPU), businesses enhance the system's ability and performance whenever required to match high user requirements. Thus enabling a traditional CPU to act as a powerful virtual machine to handle 3D motions and graphics, image, and video capabilities to experience smoothly. E2E Networks offer world premium NVIDIA virtual GPU technology to match with high data processing requirements.

For more Details Signup here :

Latest Blogs
This is a decorative image for: What is SOTA in Artificial Intelligence?
August 5, 2022

What is SOTA in Artificial Intelligence?

If you are one of those people who love to pursue Artificial Intelligence and related operations like Machine Learning, then you must have certainly come across a term called SOTA. It is one of the much-talked things in the field of AI and holds a lot of gravity.

But for those who are interested yet are clueless about what SOTA is and what its relevance is in the field of AI, here is a simple definition of SOTA, what it means, and what importance it holds.  

What is SOTA?

SOTA is an acronym for State-Of-The-Art. In the context of Artificial Intelligence (AI), it refers to the best models that can be used for achieving the results in a task. Mind you; it should be an AI-specific task only. SOTA models can be applied in many ways in AI. It could either be applied to –

(a) Machine Learning (ML) tasks

(b) Deep Neural Networks (DNNs) tasks

(c) Natural Language Processing (NLPs) [this is a subset of deep neural networks]

(d) Generic tasks

How does SOTA help in AI?

Using SOTA models in AI has many benefits of its own. The primary benefits are –

  • Increases task precision

First of all, you should check which parameters define your SOTA Model. These parameters could be the recall or the precision, or the area under the curve (AUC). It could be any metric you choose. After that, you could determine the value of the SOTA for each of the chosen metrics. If these metrics get a high score (about 90%-95%) in performance accuracy, then it is labelled as a SOTA. Now it is pretty obvious that these models score high on accuracy, so the AI task will be as close to what the users need to do.  

  • Increases reliability

Since the precision of the SOTA models is high, as mentioned above, the reliability of the AI task also increases. If it is a machine learning task or deep neural network task, then be assured that the results are pretty much what they are supposed to be. They can be trusted and not be considered a random test of sorts. But how do you know that the SOTA is trustworthy?

So, here’s a suggestion. While you are building the SOTA test, it would be better if you ran noise experiments on the SOTA model. It will help you in measuring the standard deviation in the many identical tests runs that you are subjecting the model to. You can use this measurable deviation as a sort of shift or tolerance, and then you can compare the original SOTA result and the reproduced result. Testing the results will help you in verifying the features that are required in the algorithm in the future.

  • Ensures reproducibility

If you want your AI product to be agile and lean, then you will be able to ship the minimal viable product (MVP or a minimal version of your envisioned product) quickly to all your customers. You can then proceed to get user feedback and improve iteratively. Therefore, reproducibility in your SOTA model can be considered to be a good practice. This will help you in making compromises in your algorithm. You can also ship your algorithm quickly. And yes, about the customer feedback you have collected, you can use it as a guide for all your efforts in future product improvements.

  • Reduces generation time

Since the SOTA model helps you in reproducibility of the algorithm or the product, it also helps you in saving time when you put the entire process on the conveyor belt. That means you can make a saleable product from a prototype in less time than when you made the same product from scratch. All you need is to reproduce the algorithm on the parameters on which it needs to be tested are already in possession, so yes, you save a lot of time in the generation of the product.

When should you run a SOTA test?

You should run SOTA tests as frequently as possible. Frequent SOTA tests are a rule of thumb in AI. But it is advisable to run them once a week. You should also run the SOTA tests when you are incorporating important changes. It is advisable to run the SOTA tests should be run on a cloud virtual machine using a good pipeline like Jenkins.

Where can the SOTA models be used?

SOTA models are used in various artificial intelligence activities –

(a) Object detection by deep neural networks

(b) Single shot multi box detectors

(c) Self-adaptive tasks like choosing variable patterns

This list is not exhaustive as the possibility of using SOTA encompasses many branches of AI. Be on the lookout for future blogs to know more about SOTA and its applications in every subset of AI.

To sum up, SOTA models have played a crucial role in advancing AI and ML technologies. It has introduced structural efficiency that has boosted performance. Now, developers run various SOTA tests using the virtual GPUs, which further streamlines the process and reduce the upfront infrastructure costs, and E2E Networks is making it possible with cloud GPUs.

Reference Links

This is a decorative image for : Should you migrate to E2E Cloud from Digital Ocean?
August 5, 2022

Should you migrate to E2E Cloud from Digital Ocean?

There comes a time in professional business life when they want to migrate all their data, resources, applications, workloads, etc., to the cloud for security reasons. It is a process of transferring data from on-premises to the cloud. Everyone prefers to use the cloud these days, but cloud migration can be an overwhelming process. Business wants to go with a service with minimal downtime and a hassle-free experience. So if you are using Digital Ocean for a while and now prefer to switch to another service, then this one question must have popped into your mind: should you migrate to the E2E cloud from the digital ocean? Here in this blog, we are going to answer the same. But first thing first, let's understand the benefits of migrating to the cloud.

The Top Benefit of Migrating to the Cloud

Businesses prefer to rely on cloud platforms due to various reasons, some of which are listed below:

1. Security

The first benefit of using a cloud platform is the high level of security compared to other network systems. The shared responsibility model is used in the cloud system, which is why this model is more successful than the traditional network system. All the data and resources of the business are stored centrally, which makes the cloud network convenient.

2. Scalability

The second benefit of using cloud platforms is scalability which means businesses can increase and decrease their requirement anytime based on the need and performance of the company. Firms and organisations have the flexibility to alter their infrastructure needs and workloads based on the current condition.

3. Integration

Another benefit of switching to a cloud platform is seamless integration. Businesses can connect multiple systems altogether without any difficulty. Not only does this increase the efficiency of the company, but it also saves money. Cloud services are updated and improved regularly, so the chances of decreased efficiency are less.

4. Cost

Lastly, one of the significant benefits of using cloud networks is cost. It reduced operational costs. Business here only pays according to usage, saving a lot of money.

Should You Migrate to the E2E Cloud From Digital Ocean?

Yes, that is possible, and with the recent hike in Digital Ocean's price, the only convenient option for organizations is to migrate to the best affordable solution. And when we talk about affordability, the E2E cloud seems to be the best in the market. The answer has a high-quality infrastructure. Around ten thousand clients are relying on E2E cloud solutions. The platform is built to fulfil the need of every kind of business. The solution is designed to execute real-world use cases such as NLP, health tech and consumer tech.

The thing which is loved by businesses is the quick deployment process, and the E2E cloud understands that very well. That's why companies will get the one-click deployment at their fingertip. And most importantly, the pricing model business will bring to the E2E cloud is unbeatable.

The process of cloud migration can be excruciating. Newbies and newcomers can't do it without proper assistance. That's why the E2E cloud is readily available at their customer service with the required help.

Sign up to E2E Cloud Now

With all that in mind, if you are looking for the most convenient solution, then give the E2E cloud a try. Not only will we help you save money, but you will get the cloud platform with high reliability too. Reach out to us to get a consultation on the migration process from Digital Ocean to our forum.


This is a decorative image for- How do data scientists use PyTorch?
August 4, 2022

How do data scientists use PyTorch?

PyTorch was introduced for the first time in 2016 and it is a deep learning open-source framework. It has become very popular among developers due to its ease of usage and efficiency. PyTorch is getting huge critical acclaim because of its compatibility with a high-level programming language Python which is also favored by data scientists and machine learning developers.

About PyTorch

Deep learning models are a type of machine learning model that have multiple applications and usage which include language processing, image recognition, and more. PyTorch is an elegant framework that can help in the construction of deep learning models. This framework has been written using Python and the best part about PyTorch is that it is extremely easy to learn and implement for machine learning developers.

Furthermore, PyTorch is unique in its support of GPUs. Other exclusive features of PyTorch include auto-differentiation, reverse-mode, computational graph, etc. This is also why PyTorch is a popular choice among developers for prototyping and fast experimentation.

Why is PyTorch a popular choice among developers and data scientists?

PyTorch is the product of Meta’s Artificial Intelligence research lab and others. The framework has incorporated the Python programming language in the front end with a resilient and productive backend library from Torch which is also GPU accelerated. The entire framework concentrates on unreadable code, quick prototyping, and assisting multiple categories of deep learning models. 

Although PyTorch enables the friendly yet authoritative programming approach for data scientists and developers, simultaneously providing production graphs. The framework was released as open source in the year 2017 and because of its Python roots, it has become fairly popular among machine learning programmers.

Benefits of PyTorch for data scientists

Due to its innovative characteristics, PyTorch is extremely popular in deep learning. For example, PyTorch has implemented a chainer technology known as reverse-mode automatic differentiation. To put it more simply, the method is like a tape recorder that completes each and every operation, then computes the gradients, and finally iterates the entire process. 

Due to this particular feature, debugging in PyTorch is very simple and it can also adapt to specific applications such as dynamic neural networks.  PyTorch is also well accepted for prototyping because every repetition can provide different results.

Python developers extensively use PyTorch which has been developed using the Python language. The framework utilizes the define-by-run eager execution mode and authoritativeness of the language through which all the operations are executed. 

Although Python is fairly popular among developers and other programming languages, a recent survey by Datanami shows there has been a growing focus on machine learning, deep learning, and AI thus paving the way for industry-wide PyTorch implementation.

For existing Python developers and data scientists, PyTorch has become a good choice for its futuristic scope. Moreover, those who are comparatively new to deep learning can already come across an enlarging library of deep learning courses which are specifically based on PyTorch. Since its release, the API of this framework has remained consistent and that is why PyTorch is significantly easy to decipher for experienced Python programmers.

If we look at any particular strength of PyTorch then it is prototyping in smaller projects. It is also beneficial for academics and research communities because of its ease of usage and flexibility. Facebook’s AI research lab is also working tirelessly to ameliorate the productive application of PyTorch.

The latest releases of PyTorch have included multiple enhancements. Moreover, it has also added ONNX, or Open Neural Network Exchange which can help the developers comply with the deep learning models that will be productive for their projects or applications.

Features of PyTorch

Here is a list of important features of PyTorch:


  • PyTorch has an excellent and active community of developers that provides brilliant tutorials and documentation. You can visit their forum at
  • The entire framework has been developed using the popular programming language Python and the developers have also included Python libraries such as NumPy to conduct scientific computing. For the compilation of Python to C and to provide a better performance, SciPy and Cython have been used. 
  • PyTorch is very easy for data scientists and Python developers because it has similar syntax and utilization.
  • Major cloud platform supports PyTorch.
  • The scripting language of PyTorch is known as TorchScript and it is very easy to use as well as ductile when used in eager mode (eager mode is a specific mode of this framework where operations are executed instantly as they are derived from Python). You can also change to the graph mode if you require better optimization and more speed in C++ runtime settings.
  • PyTorch can effectively support parallel processing, GPU, distributed training, and CPU, which means any computational work can be allocated among various GPU and CPU cores. Furthermore, you can also conduct training on multiple machines using multiple GPUs.
  • Dynamic computational graphs are supported by PyTorch which enables the network behavior to be transitioned during the runtime. This flexible characteristic is a major feature that sets apart PyTorch from the existing deep learning frameworks (because the rest of them require neural networks to be delineated as a static object before runtime.)
  • PyTorch also has a storage of pre-trained models that can be replicated using a single code line.
  • PyTorch as a deep learning framework has both the eager mode (for experiments) and graph mode (for the execution of performance).
  • You can extend the core functionality of your applications using the brilliant APIs of PyTorch.
  • The libraries and tools of PyTorch range from reinforcement learning to computer vision.
  • The pure C++ frontend interface which the python developers are accustomed to is supported by PyTorch and you can also create high-performance C++ applications using the same.
  • In PyTorch, you will be easily able to construct a brand-new custom component as a subclass under the standard Python class.
  • You can easily import the libraries and parameters which can further be efficiently dispensed with the help of TensorBoard (which is an external toolkit.)

Practical use case of PyTorch for data scientists

Due to the PyTorch framework being convenient and flexible, it is being used in multiple projects and applications such as natural language processing, reinforcement learning, image classification, etc. Let us discuss them in brief:

Natural Language Processing (NLP)

If we look at software or virtual assistants, we will be able to understand how machine learning has made significant breakthroughs in understanding natural languages. 

Most of these models utilize a flat sequence of characters or words in the form of recurrent neural networks or RNN to process the sequences. Yet, a lot of linguistics think that language can be comprehended most efficiently if we use a stratified tree of phrases.

That is why a lot of research has been done on the deep learning models which are termed as recursive neural networks that undertake this approach recommended by linguistics. Although these models do have a complex nature and are hard to implement, PyTorch smoothens these difficult natural language processing models to make them much easier and more efficient. Right now, Salesforce is utilizing PyTorch for multi-task learning and NLP.

Computer vision

You can utilize computer neural networks to reinforce the development of image classification, object detection, and generative application. The framework also helps the programmers to process images and videos through which they will be able to construct a detailed and unambiguous computer vision model.

Reinforcement learning

You can easily control the motion of robots, create business development plans and reinforce robotic processes with the help of PyTorch.

How data scientists can work with reinforcement learning with the help of PyTorch

For data scientists, there are multiple use cases of PyTorch in the deep learning field. Moreover, you can experience better results with the implementation of PyTorch in multiple projects regarding style transfer, image classification for identifying fake goods, etc. 

Currently, tech giants are also using PyTorch for natural language processing. If we carefully look at the progress and implementation of PyTorch in the field of deep learning and artificial intelligence, learning this framework as one of your technical abilities can open up lots of future opportunities for you.

Reference links:

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure