What is PyTorch used for (practical use cases)

August 4, 2022

PyTorch Definition

PyTorch has been developed by the Torch Python program and it is an open-source library that gets utilized in machine learning libraries. It was released in January 2016. 

This open-source library is mostly utilized in natural language processing applications, computer vision, and deep learning. By using PyTorch as the core data structure, developers can easily construct intricate neural networks like Tensor and various multi-dimensional arrays such as Numpy arrays.

Currently, in the computer science and information technology sector the usage of PyTorch is rapidly increasing. The research community is also hyped up about this open-source library because of its efficiency, flexibility, ease of access, and ability to implement and run a project in no time. This is also the reason why PyTorch is considered one of the best deep learning tools.

Why do we need to learn PyTorch?

Right now, the PyTorch framework should be regarded as the successor of the deep learning framework. Although there are multiple deep learning frameworks available, the most preferred ones are PyTorch and Tensorflow. 

Due to its computing capacity and resilience PyTorch is rapidly emerging as the absolute winner among all the other deep learning frameworks. For anyone who has a knack for artificial intelligence and machine learning, PyTorch is very easy to learn and you can use it to construct various models.

Here is a list of reasons why researchers and developers learn PyTorch:

Extremely easy to learn

The structure of PyTorch is very similar to that of traditional programming and the developer community has been continuously working to improve it further. Moreover, PyTorch has also been effectively documented so that everyone can easily access it. Both programmers and non-programmers can easily learn PyTorch.

Productivity of the developer

PyTorch has multiple different APIs and an interface of Python. Moreover, it can also be implemented in Linux OS and Windows. Most of the tasks of PyTorch can easily be automated and that is why programmers can improve their knowledge in this field and increase their productivity at the same time.

Very easy to debug

PyTorch can easily support the debugging tools of Python such as ipdb and pdb.  During its runtime, PyTorch creates a computational graph and that is why developers can easily use PyCharm, the IDE of Pythons for the debugging process.

Parallelism of Data

PyTorch can easily allocate different computational tasks among various GPU and CPUs. PyTorch has a data parallelism feature that can easily wrap any module in parallel processing.

Handy libraries

PyTorch is very popular among developers and programmers and this community has built different tools and libraries to enlarge PyTorch. The entire programming community assists in developing NLP for research and production, reinforcement learning, computer vision, etc. The rich and powerful APIs also help in developing PyTorch Framework. Some of the most popular PyTorch libraries are BoTorch, Allen NLP, and GPyTorch.

Components of PyTorch

Let us find out more about the five different components of PyTorch:

  • Tensors: Tensors are very homogeneous to the Numpy array and it is also multi-dimensional. The Tensors are accessible in PyTorch as a torch. Some examples are torch.CharTen, IntTesnor, torch.FloatTensor, etc.
  • Variable: A variable works as a wrapper around the Tensor to clutch the gradient. You can find variables under the torch.autograd in the form of a torch.autograd.Variable.
  • Parameters: The work of a Parameter is to wrap the variable and we use it when the Tensors of a module do not possess a gradient. We can find parameters under the torch.nn in the form of torch.nn.Parameter.
  • Functions: Functions do not possess any memory and their work is to transform the operations. Some examples of function are torch.sum, torch.log, etc. Functions are implemented using torch.nn.functional.
  • Modules: Modules are the base class of all neural networks and they also can contain different functions, modules, and parameters. It is efficient in storing learnable weights and states. Modules can be applied as torch.nn.Linear, torch.nn.Conv2d, etc.

Advantages and shortcomings of using PyTorch

Here is a list of benefits and shortcomings of using PyTorch:

Benefits

  • PyTorch is very easy to learn and code for both programmers and non-programmers
  • It has a rich set of APIs that have successfully enlarged the PyTorch libraries.
  • It can support the computational graph during its runtime.
  • PyTorch can provide optimization, while it is quick and flexible.
  • PyTorch supports both the CPU and GPU.
  • You can easily use the debugging tools of Python, including Python IDE.
  • It also reinforces the cloud platforms. 

Shortcomings of PyTorch

  • PyTorch was released in 2016, therefore it is a comparatively new open-source library. As a result, it is not widely known among developers and it also has limited users.
  • PyTorch doesn’t have any visualization and monitoring tool similar to the Tensor board.
  • Compared to the other existing frameworks, the developer community is very small.

Fundamental applications of PyTorch

Computer vision

PyTorch can be utilized in the computer neural network to develop object detection, generative application, and image classification. Furthermore, with the help of this framework developers can process videos and images which will help them in constructing a highly precise and detailed computer vision model.

Natural language processing

You can utilize the PyTorch framework to modify the language modeling, develop a chatbot, and as a language translator. Moreover, it can also use LSTM and RNN architecture to embellish a natural language processing model.

Reinforcement learning

PyTorch can also be used for business development plans, motion control of robots, and robotic automation processes. It makes use of the Deep Q learning architecture to construct a model.

5 practical use cases of PyTorch in artificial intelligence 

With the help of PyTorch (in deep learning tasks) you and your team will be able to construct predictive algorithms from different data sets. For example, you can employ past real estate data to anticipate the future prices of real estate. Similarly, in the case of a production plant, you can utilize the plant’s production history and predict the future failure rate. Some of the common and practical use cases of PyTorch include:

Image categorization

With the help of PyTorch developers can create specific neural network architectures which are also known as CNN or Convolutional Neural Networks. These CNNs are multi-layered and are provided with various images of a specified object, for example, a cat. Similar to the work of a brain, the system will be able to effectively identify a new cat’s picture. Currently, the medical industry is utilizing this application of PyTorch to identify ailments such as skin cancer.

Recognizing handwriting

This particular application of PyTorch implicates the analysis of human handwriting and how the inconsistencies appear in every individual across various languages. The chief AI scientist of Meta, Yann LeCun, has become the harbinger of CNNs that can perceive handwritten numbers.

Forecasting time sequences

Here developers use a Recurrent Neural Network or RNN which is a specific kind of neural algorithm that can provide effective information depending on the past data. For example, using RNNs an airline can anticipate the number of passengers they will receive for a particular month.

Generating texts

Another use case of PyTorch and RNNs is text generation which means you can train the AI model utilizing a specific text (for example, the literary work of Shakespeare), and in the end, it will construct its output according to the things the AI model has learned during the training process.

Transfer of Style

Style Transfer can be considered one of the funniest and most popular applications of PyTorch. In this case, the deep learning algorithm controls the images and videos to embrace the pictorial style of that video or image on another video or image. 

For example, you can use your favorite digital image and change it into art or drawing created by a famous artist or painter such as Van Gogh. Moreover, you can also do the reverse, meaning you can turn the painting into a digital image that looks too good to be true.

Companies using PyTorch

A report from market analytics agency HG Insights shows that companies like ADP, Apple, NVIDIA, PepsiCo, and Walmart have been using PyTorch for developing deep learning models to enhance predictive analytic studies. 

This large-scale adoption of the technology by major corporations has fueled the top three leading cloud providers – Amazon, Google, and Microsoft – to add cloud computing instances having a preinstalled PyTorch 1.1, thus popularizing it globally.

 

PyTorch is poised for marvelous milestones and targets in the deep learning space and with the pace with which it is performing now, the journey has only begun. Multiple ways this technology can be utilized in daily applications like creating prototype photo filters to adapt style transfer principles, identifying fake goods assisted by image classification, and so on. PyTorch is at present the primary framework being used by corporations for Natural Language Processing, deep learning, etc.

Having a similar syntax to other standard programming languages, PyTorch makes it easier for AI or Machine learning engineers to learn or transition from other alternatives. Going by the recent trends, abundant research and development activity is reserved for PyTorch implementation projects. Thus, adding PyTorch to your technical skills currently is the right decision that you can make with PyTorch Bootcamps and deep learning courses.

 

Reference links:

https://www.analyticsvidhya.com/blog/2021/04/a-gentle-introduction-to-pytorch-library/#:~:text=PyTorch%20is%20an%20optimized%20tensor,others%20being%20TensorFlow%20and%20Keras.

https://realpython.com/pytorch-vs-tensorflow/

https://analyticsindiamag.com/8-free-resources-tools-to-learn-pytorch-in-2021/

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/

Latest Blogs
This is a decorative image for: Comparison between Cloud-Based and On Premises GPUs
October 6, 2022

Comparison between Cloud-Based and On Premises GPUs

Cloud GPUs vs On Premises GPUs

Cloud GPUs are typically more powerful than on-premises GPU instances. The cost of renting a cloud GPU is generally lower than the cost of purchasing an on-premise GPU. 

Cloud platforms offer fast access to high performance compute and deep learning algorithms, which makes it simpler to start using machine learning models and get early insights into your data. 

Cloud GPUs are better for machine learning because they have lower latency, which is important because the time it takes a neural network to learn from data affects its accuracy. Furthermore, cloud GPUs allow users to take advantage of large-scale training datasets without having to build and maintain their own infrastructure.

On Premises GPUs are better for machine learning if you need high performance or require access to cutting-edge technologies not available in the public cloud. For example, on-premises hardware can be used for deep learning applications that require high memory bandwidth and low latency.

Cloud GPUs: Cloud GPUs are remote data centers where you can rent unused GPU resources. This allows you to run your models on a massive scale, without having to install and manage a local machine learning cluster.

Lower TCO: Cloud GPUs require no upfront investment, making them ideal for companies that are looking to reduce their overall capital expenses. Furthermore, the cost of maintenance and upgrades is also low since it takes place in the cloud rather than on-premises.

Scalability & Flexibility: With cloud-based GPU resources, businesses can scale up or down as needed without any penalty. This ensures that they have the resources they need when demand spikes but also saves them money when there is little or no demand for those resources at all times.

Enhanced Capacity Planning Capabilities: Cloud GPU platforms allow businesses to better plan for future demands by providing estimates of how much processing power will be required in the next 12 months and beyond based on past data points such as workloads run and successes achieved with similar models/algorithms etc... 

Security & Compliance : Since cloud GPUs reside in a remote datacenter separate from your business' core systems, you are ensured peace of mind when it comes to security and compliance matters (eigenvector scanning / firewalls / SELinux etc...) 

Reduced Total Cost Of Ownership (TCO) over time due to pay-as-you-go pricing model which allows you only spend what you actually use vs traditional software licensing models where significant upfront investments are made.

Cloud GPUs: Cloud GPUs offer significant performance benefits over on-premises GPUs. They are accessible from anywhere, and you don't need to own or manage the hardware. This makes them a great choice for data scientists who work with multiple data sets across different platforms.

Numerous Platforms Available for Use: The wide variety of available platforms (Windows, Linux) means that you can run your models using the most popular machine learning libraries and frameworks across different platforms without having to worry about compatibility issues between them.

This is a decorative image for: Impact of the Strong Dollar: Cloud Costs Increasing, Be Indian Buy Indian
October 4, 2022

Impact of the Strong Dollar: Cloud Costs Increasing, Be Indian Buy Indian

Indian SMEs and startups are feeling the effects of the high dollar. These businesses use hyperscalers(MNC Cloud) who cannot modify their rates to account for the changing exchange rate. For certain companies, even a little shift in the currency rate may have a significant effect on their bottom line. Did you know, when the INR-USD exchange rate moved from 60 to 70 in December 2015, it had an impact of around 20% on Digital Innovation?

As the rupee is inching closer to 82 per dollar, the strong dollar has directly impacted the costs of cloud services for Indian businesses. The high cost of storage and computing power, along with bandwidth charges from overseas vendors, has led to a huge increase in the effective rate of these services. This is especially true for startups and SMEs that rely on cloud computing to store and process user data. With the strong dollar continuing to impact the cost of cloud services, it is essential for Indian companies to evaluate their options and adopt local alternatives wherever possible. This blog post will discuss how the strong dollar impacts cloud costs, as well as potential Indian alternatives you can explore in response to this global economic trend. 

What is a Strong Dollar?

A strong US dollar($) is a term used to describe a situation where a US’s currency has appreciated in value compared to other major currencies. This can be due to a variety of factors, including interest rate changes, a country’s current account deficit, and investor sentiment. When a currency appreciates, it means that it is worth more. A strong dollar makes imports more expensive, while making exports cheaper. Strong dollars have been a growing trend in the past couple of years. As the US Federal Reserve continues to hike interest rates, the dollar strengthens further. The rising value of the dollar means that the cost of cloud services, especially from hyperscalers based in the US, will rise as well. 

Increase in Cloud Costs Due to Strong Dollar

Cloud services are essential for modern businesses, as they provide easy access to software, storage, and computing resources. Cloud services are delivered over the internet and are typically charged on a per-use basis. This makes them incredibly convenient for businesses, as they can pay for only the resources they actually use. Cloud computing allows businesses to scale their resources up or down, depending on their current business needs. This makes it suitable for startups, where demand is uncertain, or large enterprises with global operations. Cloud computing is also inherently scalable and allows businesses to quickly react to changing business needs. Cloud computing is a very competitive industry and providers offer attractive prices to attract customers. However, these prices have been impacted by the strong dollar. The dollar has strengthened by 15-20% against the Indian rupee in the last few years. As a result, the costs of services such as storage and bandwidth have increased for Indian companies. Vendors charge their Indian customers in Indian rupees, taking into account the exchange rate. This has resulted in a significant rise in the costs of these services for Indian companies.

Why are Cloud Services Becoming More Expensive?

Cloud services are priced in US dollars. When the dollar is strong, the effective price of services will be higher in Indian rupees, as the cost is not re-adjusted. There are a couple of reasons for this price discrepancy. First, Indian customers will have to pay the same prices as American customers, despite a weaker Indian rupee. Second, vendors have to ensure that they make a profit.

Possible Indian Alternatives to Cloud Services

If you're looking for a cost-effective substitute for services provided by the U.S.-based suppliers, consider E2E Cloud, an Indian cloud service provider. When it comes to cloud services, E2E Cloud provides everything that startups and SMEs could possibly need.

The table below lists some of these services and compares their cost against their US equivalents. 

According to the data in the table above, Indian E2E Cloud Services are much cheaper than their American equivalents. The difference in price between some of these options is substantial. When compared to the prices charged by suppliers in the United States, E2E Cloud's bandwidth costs are surprisingly low. Although not all E2E Cloud services will be noticeably less expensive. Using Indian services, however, has an additional, crucial perk: data sovereignty.

Conclusion

The price of cloud services will rise as the US Dollar appreciates. Indian businesses will need to find ways to counteract the strong dollar's impact on their bottom lines. To do this, one must use E2E Cloud. The availability of E2E Cloud services in INR currency is a bonus on top of the already substantial cost savings. An effective protection against the negative effects of a strong dollar.

This is a decorative image for: Actions CEOs can take to get the value in Cloud Computing
September 28, 2022

Actions CEOs can take to get the value in Cloud Computing

It is not a new thing to say that a major transition is on the way. The transition in which businesses will rely heavily on cloud infrastructure rather than having their own physical IT structure. All of this is due to the cost savings and increased productivity that cloud technology brings to these businesses. Each technological advancement comes with a certain level of risk. Which must be handled carefully in order to ensure the long-term viability of the technology and the benefits it provides.

And CEOs are the primary motivators and decision-makers in any major shift or technological migration in the organization. In the twenty-first century, which is a data-driven century, it is up to the company's leader to decide what and how his/her organization will perform, overcome the risk and succeed in the coming days.

In this blog, we are going to address a few of the actions that CEOs can take to get value in cloud Computing.

  1. A Coordinated Effort

As the saying goes, the more you avoid the risk, the closer it gets. So, if CEOs and their management teams have yet to take an active part or give the necessary attention that their migration journey to the cloud requires, now is the best time to start top-team support for the cloud enablement required to expedite digital strategy, digitalization of the organization, 

The CEO's position is critical because no one else can mediate between the many stakeholders involved, including the CIO, CTO, CFO, chief human-resources officer (CHRO), chief information security officer (CISO), and business-unit leaders.

The move to cloud computing is a collective-action challenge, requiring a coordinated effort throughout an organization's leadership staff. In other words, it's a question of orchestration, and only CEOs can wield the baton. To accelerate the transition to the cloud, CEOs should ask their CIO and CTO what assistance they require to guide the business on the path.

     2. Enhancing business interactions 

To achieve the speed and agility that cloud platforms offer, regular engagement is required between IT managers and their counterparts in business units and functions, particularly those who control products and competence areas. CEOs must encourage company executives to choose qualified decision-makers to serve as product owners for each business capability.

  1. Be Agile

If your organization wants to benefit from the cloud, your IT department, if it isn't already, must become more agile. This entails more than simply transitioning development teams to agile product models. Agile IT also entails bringing agility to your IT infrastructure and operations by transitioning infrastructure and security teams from reactive, "ticket-driven" operations to proactive models in which scrum teams create application programme interfaces (APIs) that service businesses and developers can consume.

  1. Recruiting new employees 

CIOs and CTOs are currently in the lead due to their outstanding efforts in the aftermath of the epidemic. The CEOs must ensure that these executives maintain their momentum while they conduct the cloud transformation. 

Also, Cloud technology necessitates the hire of a highly skilled team of engineers, who are few in number but extremely expensive. As a result, it is envisaged that the CHRO's normal hiring procedures will need to be adjusted in order to attract the proper expertise. Company CEOs may facilitate this by appropriate involvement since this will be critical in deciding the success of the cloud transition.

  1. Model of Business Sustainability 

Funding is a critical component of shifting to the cloud. You will be creating various changes in your sector, from changing the way you now do business to utilizing new infrastructure. As a result, you'll have to spend on infrastructure, tools, and technologies. As CEO, you must develop a business strategy that ensures that every investment provides a satisfactory return on investment for your company. Then, evaluate your investments in order to optimise business development and value.

  1. Taking risks into consideration 

Risk is inherent in all aspects of corporate technology. Companies must be aware of the risks associated with cloud adoption in order to reduce security, resilience, and compliance problems. This includes, among other things, engaging in comprehensive talks about the appropriate procedures for matching risk appetite with technological environment decisions. Getting the business to take the correct risk tone will necessitate special attention from the CEO.

It's easy to allow concerns about security, resilience, and compliance to stall a cloud operation. Instead of allowing risks to derail progress, CEOs should insist on a realistic risk appetite that represents the company plan, while situating cloud computing risks within the context of current on-premises computing risks and demanding choices for risk mitigation in the cloud.

Conclusion

In conclusion, the benefits of cloud computing may be obtained through a high-level approach. A smooth collaboration between the CEO, CIO, and CTO may transform a digital transformation journey into a profitable avenue for the company.

CEOs must consider long-term cloud computing strategy and ensure that the organization is provided with the funding and resources for cloud adoption. The right communication is critical in cloud migration: employees should get these communications from C-suite executives in order to build confidence and guarantee adherence to governance requirements. Simply installing the cloud will not provide value for a company. Higher-level executives (particularly the CEO) must take the lead in the digital transformation path.

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure