Use cases of Artificial Intelligence in Manufacturing industry

June 21, 2022

Manufacturers can now increase throughput, and speed research and development, thanks to AI and Machine Learning. According to a recent poll, 60% of manufacturers are adopting AI to enhance product quality, increase supply chain speed and visibility, and optimize inventory management. 

Many internal obstacles in the manufacturing industry have been overcome by AI, ranging from a lack of experience to decision-making complexity, integration concerns, and information overload. Businesses may fundamentally revolutionize their processes by implementing AI in their manufacturing plants. 

Let's look at how AI is assisting organizations in the manufacturing industry to achieve their business goals.

Why is artificial intelligence crucial in the manufacturing industry?

Manufacturing generates a lot of analytical data that machines and AI algorithms can easily process. This data contains a lot of variables as hundreds of factors influence the manufacturing process, and while humans find it difficult to examine them, Artificial Intelligence models can accurately forecast the impact of individual variables in such complicated circumstances. 

Artificial intelligence is crucial in the manufacturing industry as it improves the preservation and quality of the goods/products manufactured.  

Below are the few basic requirements of the manufacturing industry which show why there is a high need for AI models to increase the efficiency:

 

  • In the industry revenue volatility is high. 
  • Continuous cost-cutting efforts are to be made.
  • Production schedules are short.
  • A regular need for inspections and regulations.
  • High flexibility, and
  • Efficient manufacturing capacity and supply chain systems are needed.

What are the advantages of artificial intelligence in manufacturing?

Added benefits of using AI in the manufacturing industry include making data-driven quick choices, fast improved manufacturing results, improved process efficiency, reduced operational costs, more scalability, and easier product development. Furthermore, because AI is strong at interpreting and translating natural language, it will be easier for workers and managers to interact with software. Users of software, for example, generally prefer to search for items rather than browse a lengthy menu. AI allows the software to understand the user's intentions, making the system more spontaneous, resulting in better output and fewer mistakes.

Some of the most prevalent use cases of AI in the manufacturing industry-

  1. Management of Inventory: Inventory management inefficiency can result in considerable cost overruns for a manufacturing organization. Traditional demand forecasting methods (ARIMA, exponential smoothing, etc.) used by engineers in manufacturing facilities produce less accurate findings than AI-powered demand forecasting systems. Manufacturers may maintain their order records and add/delete new inventory using AI technologies. In order to manage stocks based on demand and supply, AI is crucial. AI & ML systems that are strong at demand forecasting and supply planning might help enhance inventory planning operations. These technologies help firms better manage inventory levels, reducing the likelihood of cash-in-stock and out-of-stock events.

  1. Predictive Maintenance: A single equipment failure may dramatically affect the entire production process, resulting in increased downtime and expenses. As a result, thorough and timely machinery maintenance is critical. Unfortunately, this is frequently neglected until a severe failure occurs. By analyzing sensor data, manufacturers use AI technology to predict possible downtime and accidents. Manufacturers can use AI systems to predict when or whether functioning equipment will break, allowing maintenance and repair to be arranged ahead of time. Manufacturers can increase productivity while lowering the cost of equipment failure thanks to AI-powered predictive maintenance.

  1. Designing: In addition to easing the maintenance using predictive analytics, AI may assist companies to create and design products/items. Here's how it works: generative design algorithms are fed design goals by a designer or engineer and these algorithms then generate design to emulate an engineer's approach to design. Designers or engineers enter design criteria into generative design software (such as materials, size, weight, strength, production processes, and cost limits), and the software generates all conceivable outcomes based on those factors, and produces design alternatives by exploring all conceivable variations of a solution. Finally, machine learning is used to test and enhance each iteration. Manufacturers may swiftly produce hundreds of design choices for a single product using this technology.

  1. Robotics: Industrial robots, often known as manufacturing robots, automate repetitive operations, reducing or eliminating human error, and allowing humans to focus on more productive aspects of the operation. There are many applications of robots in a manufacturing plant. Assembly, welding, painting, product inspection, picking and putting, die casting, drilling, glass manufacturing, and grinding are some of the applications. Another robotics use is cobots, which employ machine vision to operate securely alongside human workers to do tasks that cannot be entirely mechanized. 

  1. Assembly line integration and optimization: Many pieces of manufacturing equipment now send massive amounts of data to the cloud. Unfortunately, this data is often compartmentalized and does not interact well. Obtaining a comprehensive view of your organization necessitates the use of many dashboards and the assistance of a subject matter expert. You may assure that you're receiving a God-like vision of the business by designing an integrated app that draws data from the breadth of the IoT-connected devices you utilize.

Furthermore, by incorporating Artificial Intelligence into your IoT environment, you may automate a range of processes. Supervisors, for example, are notified when equipment operators exhibit indications of weariness. When a piece of equipment fails, the system can initiate contingency planning or other rearrangement actions automatically.

Artificial Intelligence's Future in Manufacturing Industries

It is quite likely that the Manufacturing Industry will see an empowering development with the application of AI, provided organizations can maintain inventories lean and minimize costs. 

Detecting flaws in the manufacturing process, reducing downtime by implementing predictive maintenance, Responding to changes in demand real time across the supply chain, examining whether delicates such as microchips were manufactured flawlessly, reducing the cost of single-run or small-batch items, allowing for more personalization, shifting monotonous duties to automation to improve employee happiness - are the advantages that AI will offer to the manufacturing industry in the coming future. 

Having said that, the manufacturing industry must prepare for well-organized manufacturing facilities in which the supply chain, design team, production line, and quality control are all tightly integrated into an intelligent engine that generates valuable knowledge insights.

Conclusion-

As you can see, artificial intelligence is becoming a part of commercial solutions across the manufacturing industry's whole value chain. These AI solutions provide firms with immediate chances to deploy and execute on top and bottom-line goals, as well as lead them towards more sophisticated use cases in the future.

Combining AI/ML with other technologies like sensors, robots, and human inputs would enhance operations considerably and lead to new kinds of innovation and productivity in the business. While your business may lack the requisite skill sets, don't allow that to stop you from investing in commercial AI/ML solutions to get you started.

Latest Blogs
This is a decorative image for: A Complete Guide To Customer Acquisition For Startups
October 18, 2022

A Complete Guide To Customer Acquisition For Startups

Any business is enlivened by its customers. Therefore, a strategy to constantly bring in new clients is an ongoing requirement. In this regard, having a proper customer acquisition strategy can be of great importance.

So, if you are just starting your business, or planning to expand it, read on to learn more about this concept.

The problem with customer acquisition

As an organization, when working in a diverse and competitive market like India, you need to have a well-defined customer acquisition strategy to attain success. However, this is where most startups struggle. Now, you may have a great product or service, but if you are not in the right place targeting the right demographic, you are not likely to get the results you want.

To resolve this, typically, companies invest, but if that is not channelized properly, it will be futile.

So, the best way out of this dilemma is to have a clear customer acquisition strategy in place.

How can you create the ideal customer acquisition strategy for your business?

  • Define what your goals are

You need to define your goals so that you can meet the revenue expectations you have for the current fiscal year. You need to find a value for the metrics –

  • MRR – Monthly recurring revenue, which tells you all the income that can be generated from all your income channels.
  • CLV – Customer lifetime value tells you how much a customer is willing to spend on your business during your mutual relationship duration.  
  • CAC – Customer acquisition costs, which tells how much your organization needs to spend to acquire customers constantly.
  • Churn rate – It tells you the rate at which customers stop doing business.

All these metrics tell you how well you will be able to grow your business and revenue.

  • Identify your ideal customers

You need to understand who your current customers are and who your target customers are. Once you are aware of your customer base, you can focus your energies in that direction and get the maximum sale of your products or services. You can also understand what your customers require through various analytics and markers and address them to leverage your products/services towards them.

  • Choose your channels for customer acquisition

How will you acquire customers who will eventually tell at what scale and at what rate you need to expand your business? You could market and sell your products on social media channels like Instagram, Facebook and YouTube, or invest in paid marketing like Google Ads. You need to develop a unique strategy for each of these channels. 

  • Communicate with your customers

If you know exactly what your customers have in mind, then you will be able to develop your customer strategy with a clear perspective in mind. You can do it through surveys or customer opinion forms, email contact forms, blog posts and social media posts. After that, you just need to measure the analytics, clearly understand the insights, and improve your strategy accordingly.

Combining these strategies with your long-term business plan will bring results. However, there will be challenges on the way, where you need to adapt as per the requirements to make the most of it. At the same time, introducing new technologies like AI and ML can also solve such issues easily. To learn more about the use of AI and ML and how they are transforming businesses, keep referring to the blog section of E2E Networks.

Reference Links

https://www.helpscout.com/customer-acquisition/

https://www.cloudways.com/blog/customer-acquisition-strategy-for-startups/

https://blog.hubspot.com/service/customer-acquisition

This is a decorative image for: Constructing 3D objects through Deep Learning
October 18, 2022

Image-based 3D Object Reconstruction State-of-the-Art and trends in the Deep Learning Era

3D reconstruction is one of the most complex issues of deep learning systems. There have been multiple types of research in this field, and almost everything has been tried on it — computer vision, computer graphics and machine learning, but to no avail. However, that has resulted in CNN or convolutional neural networks foraying into this field, which has yielded some success.

The Main Objective of the 3D Object Reconstruction

Developing this deep learning technology aims to infer the shape of 3D objects from 2D images. So, to conduct the experiment, you need the following:

  • Highly calibrated cameras that take a photograph of the image from various angles.
  • Large training datasets can predict the geometry of the object whose 3D image reconstruction needs to be done. These datasets can be collected from a database of images, or they can be collected and sampled from a video.

By using the apparatus and datasets, you will be able to proceed with the 3D reconstruction from 2D datasets.

State-of-the-art Technology Used by the Datasets for the Reconstruction of 3D Objects

The technology used for this purpose needs to stick to the following parameters:

  • Input

Training with the help of one or multiple RGB images, where the segmentation of the 3D ground truth needs to be done. It could be one image, multiple images or even a video stream.

The testing will also be done on the same parameters, which will also help to create a uniform, cluttered background, or both.

  • Output

The volumetric output will be done in both high and low resolution, and the surface output will be generated through parameterisation, template deformation and point cloud. Moreover, the direct and intermediate outputs will be calculated this way.

  • Network architecture used

The architecture used in training is 3D-VAE-GAN, which has an encoder and a decoder, with TL-Net and conditional GAN. At the same time, the testing architecture is 3D-VAE, which has an encoder and a decoder.

  • Training used

The degree of supervision used in 2D vs 3D supervision, weak supervision along with loss functions have to be included in this system. The training procedure is adversarial training with joint 2D and 3D embeddings. Also, the network architecture is extremely important for the speed and processing quality of the output images.

  • Practical applications and use cases

Volumetric representations and surface representations can do the reconstruction. Powerful computer systems need to be used for reconstruction.

Given below are some of the places where 3D Object Reconstruction Deep Learning Systems are used:

  • 3D reconstruction technology can be used in the Police Department for drawing the faces of criminals whose images have been procured from a crime site where their faces are not completely revealed.
  • It can be used for re-modelling ruins at ancient architectural sites. The rubble or the debris stubs of structures can be used to recreate the entire building structure and get an idea of how it looked in the past.
  • They can be used in plastic surgery where the organs, face, limbs or any other portion of the body has been damaged and needs to be rebuilt.
  • It can be used in airport security, where concealed shapes can be used for guessing whether a person is armed or is carrying explosives or not.
  • It can also help in completing DNA sequences.

So, if you are planning to implement this technology, then you can rent the required infrastructure from E2E Networks and avoid investing in it. And if you plan to learn more about such topics, then keep a tab on the blog section of the website

Reference Links

https://tongtianta.site/paper/68922

https://github.com/natowi/3D-Reconstruction-with-Deep-Learning-Methods

This is a decorative image for: Comprehensive Guide to Deep Q-Learning for Data Science Enthusiasts
October 18, 2022

A Comprehensive Guide To Deep Q-Learning For Data Science Enthusiasts

For all data science enthusiasts who would love to dig deep, we have composed a write-up about Q-Learning specifically for you all. Deep Q-Learning and Reinforcement learning (RL) are extremely popular these days. These two data science methodologies use Python libraries like TensorFlow 2 and openAI’s Gym environment.

So, read on to know more.

What is Deep Q-Learning?

Deep Q-Learning utilizes the principles of Q-learning, but instead of using the Q-table, it uses the neural network. The algorithm of deep Q-Learning uses the states as input and the optimal Q-value of every action possible as the output. The agent gathers and stores all the previous experiences in the memory of the trained tuple in the following order:

State> Next state> Action> Reward

The neural network training stability increases using a random batch of previous data by using the experience replay. Experience replay also means the previous experiences stocking, and the target network uses it for training and calculation of the Q-network and the predicted Q-Value. This neural network uses openAI Gym, which is provided by taxi-v3 environments.

Now, any understanding of Deep Q-Learning   is incomplete without talking about Reinforcement Learning.

What is Reinforcement Learning?

Reinforcement is a subsection of ML. This part of ML is related to the action in which an environmental agent participates in a reward-based system and uses Reinforcement Learning to maximize the rewards. Reinforcement Learning is a different technique from unsupervised learning or supervised learning because it does not require a supervised input/output pair. The number of corrections is also less, so it is a highly efficient technique.

Now, the understanding of reinforcement learning is incomplete without knowing about Markov Decision Process (MDP). MDP is involved with each state that has been presented in the results of the environment, derived from the state previously there. The information which composes both states is gathered and transferred to the decision process. The task of the chosen agent is to maximize the awards. The MDP optimizes the actions and helps construct the optimal policy.

For developing the MDP, you need to follow the Q-Learning Algorithm, which is an extremely important part of data science and machine learning.

What is Q-Learning Algorithm?

The process of Q-Learning is important for understanding the data from scratch. It involves defining the parameters, choosing the actions from the current state and also choosing the actions from the previous state and then developing a Q-table for maximizing the results or output rewards.

The 4 steps that are involved in Q-Learning:

  1. Initializing parameters – The RL (reinforcement learning) model learns the set of actions that the agent requires in the state, environment and time.
  2. Identifying current state – The model stores the prior records for optimal action definition for maximizing the results. For acting in the present state, the state needs to be identified and perform an action combination for it.
  3. Choosing the optimal action set and gaining the relevant experience – A Q-table is generated from the data with a set of specific states and actions, and the weight of this data is calculated for updating the Q-Table to the following step.
  4. Updating Q-table rewards and next state determination – After the relevant experience is gained and agents start getting environmental records. The reward amplitude helps to present the subsequent step.  

In case the Q-table size is huge, then the generation of the model is a time-consuming process. This situation requires Deep Q-learning.

Hopefully, this write-up has provided an outline of Deep Q-Learning and its related concepts. If you wish to learn more about such topics, then keep a tab on the blog section of the E2E Networks website.

Reference Links

https://analyticsindiamag.com/comprehensive-guide-to-deep-q-learning-for-data-science-enthusiasts/

https://medium.com/@jereminuerofficial/a-comprehensive-guide-to-deep-q-learning-8aeed632f52f

Build on the most powerful infrastructure cloud

A vector illustration of a tech city using latest cloud technologies & infrastructure