Managing a project properly is one of the factors behind its completion and subsequent success. The same can be said for any artificial intelligence (AI)/machine learning (ML)/deep learning (DL) project. Moreover, efficient management in this segment holds even more prominence as it requires continuous testing before delivering the final product.
An efficient project manager will ensure that there is ample time from the concept to the final product so that a client’s requirements are met without any delays and issues.
How is Project Management Done For AI, ML or DL Projects?
As already established, efficient project management is of great importance in AI/ML/DL projects. So, if you are planning to move into this field as a professional, here are some tips –
- Identifying the problem-
The first step toward managing an AI project is the identification of the problem. What are we trying to solve or what outcome do we desire? AI is a means to receive the outcome that we desire. Multiple solutions are chosen on which AI solutions are built.
- Testing whether the solution matches the problem-
After the problem has been identified, then testing the solution is done. We try to find out whether we have chosen the right solution for the problem. At this stage, we can ideally understand how to begin with an artificial intelligence or machine learning or deep learning project. We also need to understand whether customers will pay for this solution to the problem.
AI and ML engineers test this problem-solution fit through various techniques such as the traditional lean approach or the product design sprint. These techniques help us by analysing the solution within the deadline easily.
- Preparing the data and managing it-
If you have a stable customer base for your AI, ML or DL solutions, then begin the project by collecting data and managing it. We begin by segregating the available data into unstructured and structured forms. It is easy to do the division of data in small and medium companies. It is because the amount of data is less. However, other players who own big businesses have large amounts of data to work on. Data engineers use all the tools and techniques to organise and clean up the data.
- Choosing the algorithm for the problem-
To keep the blog simple, we will try not to mention the technical side of AI algorithms in the content here. There are different types of algorithms which depend on the type of machine learning technique we employ. If it is the supervised learning model, then the classification helps us in labelling the project and the regression helps us predict the quantity. A data engineer can choose from any of the popular algorithms like the Naïve Bayes classification or the random forest algorithm. If the unsupervised learning model is used, then clustering algorithms are used.
- Training the algorithm-
For training algorithms, one needs to use various AI techniques, which are done through software developed by programmers. While most of the job is done in Python, nowadays, JavaScript, Java, C++ and Julia are also used. So, a developmental team is set up at this stage. These developers make a minimum threshold that is able to generate the necessary statistics to train the algorithm.
- Deployment of the project-
After the project is completed, then we come to its deployment. It can either be deployed on a local server or the Cloud. So, data engineers see if the local GPU or the Cloud GPU are in order. And, then they deploy the code along with the required dashboard to view the analytics.
Final Words-
To sum it up, this is a generic overview of how a project management system should work for AI/ML/DL projects. However, a point to keep in mind here is that this is not a universal process. The particulars will alter according to a specific project.
Reference Links:
https://www.datacamp.com/blog/how-to-manage-ai-projects-effectively
https://www.datascience-pm.com/manage-ai-projects/
https://community.pmi.org/blog-post/70065/how-can-i-manage-complex-ai-projects-#_=_